Boron acid catalyzed synthesis porous graphene sponge for high-performance electrochemical capacitive storage

2018 ◽  
Vol 89 ◽  
pp. 114-121 ◽  
Author(s):  
Ji Yan ◽  
Ricky Tjandra ◽  
Hua Fang ◽  
Li-Xia Wang ◽  
Aiping Yu
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.


Author(s):  
Chao Xu ◽  
Haibo Li

Interfacial solar steam generation (ISSG) is considered to be a highly efficient and environmental-friendly desalination technique for producing potable water. Herein, we demonstrate the high-performance SSG enabled by the porous...


Carbon ◽  
2019 ◽  
Vol 143 ◽  
pp. 869-877 ◽  
Author(s):  
Dongdong Cheng ◽  
Pingping Wu ◽  
Jingwen Wang ◽  
Xingwei Tang ◽  
Tong An ◽  
...  

Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


2014 ◽  
Vol 2 (23) ◽  
pp. 8859 ◽  
Author(s):  
Xutao Ning ◽  
Wenbin Zhong ◽  
Shichao Li ◽  
Yongxin Wang ◽  
Wantai Yang

Sign in / Sign up

Export Citation Format

Share Document