scholarly journals Data for benchmarking low-cost, 3D printed prosthetic hands

Data in Brief ◽  
2019 ◽  
Vol 25 ◽  
pp. 104163 ◽  
Author(s):  
Farah Alkhatib ◽  
John-John Cabibihan ◽  
Elsadig Mahdi
Keyword(s):  
Low Cost ◽  
2021 ◽  
Vol 7 ◽  
Author(s):  
John-John Cabibihan ◽  
Farah Alkhatib ◽  
Mohammed Mudassir ◽  
Laurent A. Lambert ◽  
Osama S. Al-Kwifi ◽  
...  

The field of rehabilitation and assistive devices is being disrupted by innovations in desktop 3D printers and open-source designs. For upper limb prosthetics, those technologies have demonstrated a strong potential to aid those with missing hands. However, there are basic interfacing issues that need to be addressed for long term usage. The functionality, durability, and the price need to be considered especially for those in difficult living conditions. We evaluated the most popular designs of body-powered, 3D printed prosthetic hands. We selected a representative sample and evaluated its suitability for its grasping postures, durability, and cost. The prosthetic hand can perform three grasping postures out of the 33 grasps that a human hand can do. This corresponds to grasping objects similar to a coin, a golf ball, and a credit card. Results showed that the material used in the hand and the cables can withstand a 22 N normal grasping force, which is acceptable based on standards for accessibility design. The cost model showed that a 3D printed hand could be produced for as low as $19. For the benefit of children with congenital missing limbs and for the war-wounded, the results can serve as a baseline study to advance the development of prosthetic hands that are functional yet low-cost.


2018 ◽  
Author(s):  
M. Cognolato ◽  
M. Atzori ◽  
C. Marchesin ◽  
S. Marangon ◽  
D. Faccio ◽  
...  

AbstractUpper limb amputations are highly impairing injuries that can substantially limit the quality of life of a person. The most advanced dexterous prosthetic hands have remarkable mechanical features. However, in most cases, the control systems are a simple extension of basic control protocols, making the use of the prosthesis not intuitive and sometimes complex. Furthermore, the cost of dexterous prosthetic hands is often prohibitive, especially for the pediatric population and developing countries. 3D printed hand prostheses can represent an opportunity for the future. Open 3D models are increasingly being released, even for dexterous prostheses that are capable of moving each finger individually and actively rotating the thumb. However, the usage and test of such devices by hand amputees (using electromyography and classification methods) is not well explored. The aim of this article is to investigate the usage of a cost-effective system composed of a 3D printed hand prosthesis and a low-cost myoelectric armband. Two subjects with transradial amputation were asked to wear a custom-made socket supporting the HANDi Hand and the Thalmic Labs Myo armband. Afterwards, the subjects were asked to control and use the prosthetic hand to grasp several objects by attempting to perform a set of different hand gestures. Both the HANDi Hand and the Myo armband performed well during the test, which is encouraging considering that the HANDi Hand was developed as a research platform. The results are promising and show the feasibility of the multifunction control of dexterous 3D printed hand prostheses based on low-cost setups. Factors as the level of the amputation, neuromuscular fatigue and mechanical limitations of the 3D printed hand prosthesis can influence the performance of the setup. Practical aspects such as usability and robustness will need to be addressed for successful application in daily life. A video of the tests can be found at the following link:https://youtu.be/iPSCAbd17Qw


2020 ◽  
Author(s):  
Merel van der Stelt ◽  
Martin P. Grobusch ◽  
Abdul R. Koroma ◽  
Marco Papenburg ◽  
Ismaila Kebbie ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


HardwareX ◽  
2021 ◽  
pp. e00214
Author(s):  
David T. McCarthy ◽  
Baiqian Shi ◽  
Miao Wang ◽  
Stephen Catsamas
Keyword(s):  
Low Cost ◽  

Author(s):  
Romain Nicot ◽  
Edwige Hurteloup ◽  
Sébastien Joachim ◽  
Charles Druelle ◽  
Jean-Marc Levaillant

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


Sign in / Sign up

Export Citation Format

Share Document