scholarly journals Data set of climatic factors measured in a low latitude region with warm and humid climate: solar radiation, cloud cover and sky temperature.

Data in Brief ◽  
2021 ◽  
pp. 107404
Author(s):  
Jefferson Torres-Quezada ◽  
Helena Coch ◽  
Antonio Isalgué
2015 ◽  
Vol 33 (1) ◽  
pp. 93-100 ◽  
Author(s):  
H. Zhang ◽  
Y. Liu ◽  
J. Wu ◽  
T. Xu ◽  
D. Sheng

Abstract. The climatological characteristics of UHF-band scintillations over the low-latitude region of China were investigated by analyzing the observations recorded at three stations of our regional network of satellite-beacon-based scintillation monitoring in 2013. The three stations are Hainan (geographic 20.0° N, 110.3° E; geomagnetic 10.1° N, 177.4° W, dip 28.2°), Guangzhou (geographic 23.0° N, 113.0° E; geomagnetic 13.1° N, 174.8° W, dip 33.9°) and Kunming (geographic 25.6° N, 103.7° E; geomagnetic 15.7° N, 176.4° E, dip 39.0°), located at low latitudes of China. The variations of UHF-band scintillation occurrence with latitude, time and season are presented in detail to understand the morphology and climatology of ionospheric scintillations over the low-latitude region of China. An equinoctial asymmetry in the occurrences of scintillation and an obvious difference of the onset time of scintillations between Hainan and Kunming is noted in this data set. Subsequently, the ionosonde data are utilized to study the possible causes of the asymmetry between two equinoxes. The observations suggest that the mean critical frequency (foF2) at 20:00 LT (12:00 UT) in the autumnal equinoctial months (September and October) and the vernal equinoctial months (March and April) has a similar asymmetry. The ratio of the mean foF2 between two equinoxes is proportional to the ratio between the maximum scintillation occurrence in the autumnal equinox and in the vernal equinox. Therefore, this ratio can act as a proxy for the equinoctial asymmetry in the occurrences of scintillation over the low-latitude region of China, and can be used to model the equinoctial asymmetry in our empirical climatological model of scintillation occurrence probability (CMSOP). The CMSOP can provide the predictions of the occurrences of scintillation over the low-latitude region of China and was validated in this study.


2019 ◽  
pp. 157-169 ◽  
Author(s):  
I. S. Deev ◽  
E. V. Kurshev ◽  
S. L. Lonsky

Studies and experimental data on the microstructure of the surface of samples of epoxy сarbon-fiber-reinforced plastics that have undergone long-term (up to 5 years) climatic aging in different climatic zones of Russia have been conducted: under conditions of the industrial zone of temperate climate (Moscow, MTsKI); temperate warm climate (Gelendzhik, GTsKI); a warm humid climate (Sochi, GNIP RAS). It is established that the determining factor for aging of carbon plastics is the duration of the complex effect of climatic factors: the longer the period of climatic aging, the more significant changes occur in the microstructure of the surface of the materials. The intensity of the aging process and the degree of microstructural changes in the surface of carbon plastics are affected by the features of the climatic zone. general regularities and features of the destruction of the surface of carbon plastics after a long-term exposure to climatic factors have been established on the basis of the analysis and systematization of the results of microstructural studies.


2021 ◽  
Vol 13 (9) ◽  
pp. 1716
Author(s):  
Ankur Srivastava ◽  
Jose F. Rodriguez ◽  
Patricia M. Saco ◽  
Nikul Kumari ◽  
Omer Yetemen

Atmospheric transmissivity (τ) is a critical factor in climatology, which affects surface energy balance, measured at a limited number of meteorological stations worldwide. With the limited availability of meteorological datasets in remote areas across different climatic regions, estimation of τ is becoming a challenging task for adequate hydrological, climatic, and crop modeling studies. The availability of solar radiation data is comparatively less accessible on a global scale than the temperature and precipitation datasets, which makes it necessary to develop methods to estimate τ. Most of the previous studies provided region specific datasets of τ, which usually provide local assessments. Hence, there is a necessity to give the empirical models for τ estimation on a global scale that can be easily assessed. This study presents the analysis of the τ relationship with varying geographic features and climatic factors like latitude, aridity index, cloud cover, precipitation, temperature, diurnal temperature range, and elevation. In addition to these factors, the applicability of these relationships was evaluated for different climate types. Thus, empirical models have been proposed for each climate type to estimate τ by using the most effective factors such as cloud cover and aridity index. The cloud cover is an important yet often overlooked factor that can be used to determine the global atmospheric transmissivity. The empirical relationship and statistical indicator provided the best performance in equatorial climates as the coefficient of determination (r2) was 0.88 relatively higher than the warm temperate (r2 = 0.74) and arid regions (r2 = 0.46). According to the results, it is believed that the analysis presented in this work is applicable for estimating the τ in different ecosystems across the globe.


2006 ◽  
Vol 33 (19) ◽  
Author(s):  
Seiji Kato ◽  
Norman G. Loeb ◽  
Patrick Minnis ◽  
Jennifer A. Francis ◽  
Thomas P. Charlock ◽  
...  

Climate ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 89 ◽  
Author(s):  
Andri Pyrgou ◽  
Mattheos Santamouris ◽  
Iro Livada

High daily temperatures in the Mediterranean and Europe have been documented in observation and modeling studies. Long-term temperature data, from 1988 to 2017, from a suburban station and an urban station in Nicosia, Cyprus have been analyzed, and the diurnal temperature range (DTR) trend was investigated. The seasonal Mann–Kendall test revealed a decreasing DTR trend of −0.24 °C/decade at the urban station and −0.36 °C/decade at the suburban station, which were attributed to an increase in the daily minimum temperature. Variations in precipitation, longwave radiation, ultraviolet-A (UVA), ultraviolet-B (UVB), cloud cover, water vapor, and urbanization were used to assess their possible relationship with regional DTR. The clustering of daytime and night-time data showed a strong relationship between the DTR and observed cloud cover, net longwave radiation, and precipitation. Clouds associated with smaller shortwave and net longwave radiation reduce the DTR by decreasing the surface solar radiation, while atmospheric absolute humidity denotes an increased daytime surface evaporative cooling and higher absorption of the short and longwave radiation. The intra-cluster variation could be reduced, and the inter-cluster variance increased by the addition of other meteorological parameters and anthropogenic sources that affect DTR in order to develop a quantitative basis for assessing DTR variations.


Author(s):  
Ilias Fountoulakis ◽  
Panagiotis Kosmopoulos ◽  
Kyriakoula Papachristopoulou ◽  
Panagiotis-Ioannis Raptis ◽  
Rodanthi-Elisavet Mamouri ◽  
...  

Cyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, as well as information for clouds from CMSAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation (SSR) and the corresponding financial loss for different types of installations for production of solar energy. An SSR climatology has been also developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5 – 10% of annual GHI and 15 – 35% of annual DNI, while clouds attenuate ~25 – 30% and 35 – 50% respectively. Dust is responsible for 30 – 50% of the overall attenuation by aerosols.


Sign in / Sign up

Export Citation Format

Share Document