scholarly journals Dataset on the small- and large deformation mechanical properties of emulsion-filled gelatin hydrogels as a model particle-filled composite food gel

Data in Brief ◽  
2021 ◽  
pp. 107410
Author(s):  
Andrew J. Gravelle ◽  
Alejandro G. Marangoni
2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Mang Zhang ◽  
Yuli Chen ◽  
Fu-pen Chiang ◽  
Pelagia Irene Gouma ◽  
Lifeng Wang

The electrospinning process enables the fabrication of randomly distributed nonwoven polymer fiber networks with high surface area and high porosity, making them ideal candidates for multifunctional materials. The mechanics of nonwoven networks has been well established for elastic deformations. However, the mechanical properties of the polymer fibrous networks with large deformation are largely unexplored, while understanding their elastic and plastic mechanical properties at different fiber volume fractions, fiber aspect ratio, and constituent material properties is essential in the design of various polymer fibrous networks. In this paper, a representative volume element (RVE) based finite element model with long fibers is developed to emulate the randomly distributed nonwoven fibrous network microstructure, enabling us to systematically investigate the mechanics and large deformation behavior of random nonwoven networks. The results show that the network volume fraction, the fiber aspect ratio, and the fiber curliness have significant influences on the effective stiffness, effective yield strength, and the postyield behavior of the resulting fiber mats under both tension and shear loads. This study reveals the relation between the macroscopic mechanical behavior and the local randomly distributed network microstructure deformation mechanism of the nonwoven fiber network. The model presented here can also be applied to capture the mechanical behavior of other complex nonwoven network systems, like carbon nanotube networks, biological tissues, and artificial engineering networks.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2020 ◽  
Vol 869 ◽  
pp. 488-493
Author(s):  
Aues A. Beev ◽  
Svetlana Yu. Khashirova ◽  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Azamat Zhansitov ◽  
...  

The article presents the results of sizing of discrete carbon fibers with various substances and their effect on the properties of polyetherimide composites. As sizing agents, 1,3-diaminobenzene, 4,4'-dihydroxy-2,2-diphenylpropane, polyetherimide and oligoetherether sulfone were used. The study of physical and mechanical properties showed that all the substances used increase the properties of the carbon-filled composite based on polyetherimide. The highest mechanical properties are demonstrated by a composite containing carbon fibers treated with 1,3-diaminobenzene, which indicates improved compatibility of the filler and the polymer matrix and enhanced intermolecular interactions.


2006 ◽  
Vol 16 (5) ◽  
pp. 248-257 ◽  
Author(s):  
Chrystel Loret ◽  
William J. Frith ◽  
Peter J. Fryer

Abstract When two biopolymers are mixed together, they will normally phase separate to give two distinct phases. If the biopolymers are gelled during this phase separation, for instance by reducing the temperature, one phase is trapped in this other one and an emulsion-like composite structure is obtained. In this study, we investigated the effect of volume fraction and droplet size of this dispersed phase on the mechanical properties of maltodextrin/agarose gel composites, where agarose is the dispersed phase. Mechanical properties of the different composites were investigated under large deformation using a rheometer with a vane geometry. These composites were also observed by confocal microscopy, allowing conclusions to be drawn regarding the microstructural origins of the observed mechanical behaviour.


2020 ◽  
Vol 1006 ◽  
pp. 227-232
Author(s):  
Yuliya Danchenko ◽  
Artem Kariev ◽  
Vladimir Lebedev ◽  
Elena Barabash ◽  
Tatyana Obizhenko

The physic-mechanical properties of filled composites based on secondary polypropylene are investigated. As fillers the dispersed wastes of processing of agricultural plants - buckwheat and oat husk, as well as needles flour and wood flour were used. Water absorption, abrasion, impact strength and bending strength of composites were investigated. It has been proven that oat and buckwheat husks can be effectively used in composites based on secondary polypropylene and replace traditional wood fillers. It has been shown that the physic-chemical properties of the filled composites depend on the structure and physicochemical interactions on the phase separation surface, as well as on the surface properties of the filler particles. It is established that for the production of filled composites with improved physic-mechanical characteristics it is necessary to use fillers with small specific surface and concentration of surface functional groups, and the acid-base characteristic of the surface should be closer to neutral. It is shown that these conditions provide for the formation of a uniform structure of the filled composite with less internal stresses.


2013 ◽  
Vol 774-776 ◽  
pp. 54-57 ◽  
Author(s):  
Yu Fei Wang ◽  
Guo Fei Wang

A polyurethane-based magnetorheological elastomer (MR elastomer) was designed, and the magnetorheological effect (MR effect) under shear mode was systematically tested by the designed test set. The results show that the relative MR effect increases with the exterior magnetic filed strength and decreases as the incentive amplitudes increasing. The preload displacement also directly determines the relative MR effect and too large deformation will make the MR effect decreased sharply. But the incentive frequency has no very obviously influence on the relative MR effect.


2016 ◽  
Vol 846 ◽  
pp. 565-570 ◽  
Author(s):  
Xin Ren ◽  
Jian Hu Shen ◽  
Arash Ghaedizadeh ◽  
Hong Qi Tian ◽  
Mike Xie

Auxetic materials exhibit uncommon behaviour, i.e. they will shrink (expand) laterally under compression (tension). This novel feature has attracted intense research interest. However, most of previous works focus on auxetic behaviour in either compression or tension. Most of the auxetic materials are not symmetric in tension and compression under large deformation. Studies on the auxetic performance of metamaterials both in compression and tension are important but rare. As an extension of our previous research on compressive auxetic performance of 3D metallic auxetic metamaterials, numerical simulations were carried out to investigate the auxetic and other mechanical properties of the 3D metallic auxetic metamaterials in tension. The preliminary results indicated that the designed 3D metallic auxetic metamaterials exhibited better auxetic performance in compression than in tension. By increasing a pattern scale factor, auxetic performance of the 3D metallic auxetic metamaterials under tension can be improved. With proper adjustment of the pattern scale factor, an approximately symmetric auxetic performance could be achieved in compression and tension.


1981 ◽  
Vol 2 (1) ◽  
pp. 29-35 ◽  
Author(s):  
C. Micliaresi ◽  
L. Nicolais ◽  
L. Nicododemo ◽  
A. T. Di Benedetto

Sign in / Sign up

Export Citation Format

Share Document