Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy

2019 ◽  
Vol 24 (6) ◽  
pp. 1281-1294 ◽  
Author(s):  
Ioannis D. Kyrochristos ◽  
Demosthenes E. Ziogas ◽  
Dimitrios H. Roukos
Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3523
Author(s):  
Wancheng Guo ◽  
Haiqin Wang ◽  
Peng Chen ◽  
Xiaokai Shen ◽  
Boxin Zhang ◽  
...  

Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.


2012 ◽  
Vol 84 (5) ◽  
pp. 721-727 ◽  
Author(s):  
Laura Ceccarelli ◽  
Romina Salpini ◽  
Sylvie Moudourou ◽  
Valeria Cento ◽  
Maria M. Santoro ◽  
...  

The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 164-174 ◽  
Author(s):  
Yong Zhang ◽  
Ludi Jin ◽  
Jingjing Xu ◽  
Yuezhou Yu ◽  
Lin Shen ◽  
...  

Drug resistance and heterogeneous characteristics of human gastric carcinoma cells (BGC823) under the treatment of paclitaxel (PTX) were investigated using single-cell Raman spectroscopy (RS).


1986 ◽  
Vol 72 (2) ◽  
pp. 207-210 ◽  
Author(s):  
M. Metzlaff ◽  
W. Troebner ◽  
F. Baldauf ◽  
R. Schlegel ◽  
J. Cullum

2021 ◽  
Author(s):  
Aya Hefnawy ◽  
Gabriel Negreira ◽  
Marlene Jara ◽  
James A. Cotton ◽  
Ilse Maes ◽  
...  

AbstractThe implementation of prospective drug resistance (DR) studies in the R&D pipelines is a common practice for many infectious diseases, but not for Neglected Tropical Diseases. Here, we explored and demonstrated the importance of this approach, using as paradigms Leishmania donovani, the etiological agent of Visceral Leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK ‘Leishbox’ to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross resistance to these drugs, suggesting a new and unique mechanism. By whole genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/resistance of L. donovani to TCMDC-143345.ImportanceHumans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively, once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases, but not for NTDs. Here, using Leishmania donovani, the etiological agent of Visceral Leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK ‘Leishbox’ to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1 like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


2002 ◽  
Vol 22 (8) ◽  
pp. 2642-2649 ◽  
Author(s):  
Stéphane Le Crom ◽  
Frédéric Devaux ◽  
Philippe Marc ◽  
Xiaoting Zhang ◽  
W. Scott Moye-Rowley ◽  
...  

ABSTRACT Yrr1p is a recently described Zn2Cys6 transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA-binding domain of Yrr1p activated the 15 genes that are also up-regulated by a gain-of-function mutant of Yrr1p. Gel mobility shift assays showed that the promoters of the genes AZR1, FLR1, SNG1, YLL056C, YLR346C, and YPL088W interacted with Yrr1p. The putative consensus Yrr1p binding site deduced from these experiments, (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), is strikingly similar to the PDR element binding site sequence recognized by Pdr1p and Pdr3p. The minor differences between these sequences are consistent with Yrr1p and Pdr1p and Pdr3p having different sets of target genes. According to these data, some target genes are directly regulated by Pdr1p and Pdr3p or by Yrr1p, whereas some genes are indirectly regulated by the activation of Yrr1p. Some genes, such as YOR1, SNQ2, and FLR1, are clearly directly controlled by both classes of transcription factor, suggesting an important role for the corresponding membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document