The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

2010 ◽  
Vol 99 (3-4) ◽  
pp. 99-124 ◽  
Author(s):  
Edgardo M. Latrubesse ◽  
Mario Cozzuol ◽  
Silane A.F. da Silva-Caminha ◽  
Catherine A. Rigsby ◽  
Maria Lucia Absy ◽  
...  
Author(s):  
Patrick T. Seyler ◽  
Gerald R. Boaventura

Measurements of trace metals in rivers are of substantial interest for researchers examining basic scientific questions related to geochemical weathering and transport and to scientists involved in pollution control evaluation. Trace metals in natural waters include essential elements such as cobalt, copper, zinc, manganese, iron, molybdenum, nickel, which may also be toxic at higher concentrations, and nonessential elements, which are toxic, such as cadmium, mercury and lead. Recent findings indicate that iron and, to a lesser extent, zinc and manganese play an important role in regulating the growth and ecology of phytoplankton (Martin et al. 1991), while in contrast, cadmium, arsenic, and mercury have long been recognized as poisonous to living organisms (see Pfeiffer et al. 1993, for a description of mercury problem in the Amazon basin). The release of potentially large quantities of these toxic metals, particularly in the river systems of industrialized countries, but also in tropical rivers, is an acute problem of great environmental concern. An understanding of the weathering and transport processes controlling the fate and flux of trace metals in pristine environments is important in evaluating the capacity of receiving waters to accommodate wastes without detrimental effects. The Amazon River system, which is relatively free of industrial and agricultural interference, represents an ideal case for the investigation of the origin and transport of trace metals. This understanding may also provide a scientific basis for the anticipated development of the Amazon basin. With regard to trace metals, Amazon River is still poorly documented. Martin and Meybeck (1979) and Martin and Gordeev (1986) presented a global tabulation of trace metal concentrations in particulate matter of major rivers including the Amazon, and Palmer and Edmond (1992) measured dissolved Fe, Al, and Sr concentrations in the Amazon mainstream and a number of its tributaries. Boyle et al. (1982) and Gordeev et al. (1990) published some data on Cu, Ni, Cd, and Ag dissolved concentrations at the mouth of the Amazon River and in its oceanic plume. Konhauser et al. (1994) reported the trace and rare earth elemental composition of sediments, soils and waters, mainly in the region of Manaus.


2017 ◽  
Vol 47 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Emilio Alberto Amaral Soares ◽  
Adriana Cabral Kloster ◽  
Silvia Cristina Gnaedinger ◽  
Silvio Roberto Riker ◽  
Felipe José da Cruz Lima ◽  
...  

ABSTRACT: The relief of the regions of Manaus and Itacoatiara, Central Amazon, is supported by Neogene siliciclastic rocks, bounded at the base and top by lateritic paleosols and covered by quaternary sedimentary deposits from the Solimões-Amazon river system. This unit is informally assigned to the Novo Remanso Formation, consists of usually reddish and ferruginized sandstones, conglomerates and pelites, with few identified fossil records, a fact that has hindered its stratigraphic position, and the paleoenvironmental reconstruction of the last phase of the Amazon Basin settling. This study describes, for the first time, the occurrence of fossil wood in outcroppings of the left bank of the Amazon River, where anatomical and morphological data has enabled its characterization to the species level. Thus, the data marks the record of the Annonaceae in South America, as well as the depositional processes related to incorporation of organic material in the sandy layer and the fossilization processes that allowed its preservation. In an unprecedented way, this study has described Duguetiaxylon amazonicum nov. gen and sp. and provided information on the anatomical and systematic character, as well as data on plant-insect interaction, and a better understanding of the family.


2016 ◽  
Vol 51 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Marcos Sidney Brito Oliveira ◽  
Raissa Alves Gonçalves ◽  
Marcos Tavares-Dias
Keyword(s):  

2017 ◽  
Vol 10 (10) ◽  
pp. 3821-3859 ◽  
Author(s):  
Ronny Lauerwald ◽  
Pierre Regnier ◽  
Marta Camino-Serrano ◽  
Bertrand Guenet ◽  
Matthieu Guimberteau ◽  
...  

Abstract. Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial–aquatic interface range from 1.5 to 2.7 Pg C yr−1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2–5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy–soil–water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial–aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle–climate feedbacks in future projections.


Science ◽  
1986 ◽  
Vol 231 (4742) ◽  
pp. 1129-1131 ◽  
Author(s):  
J. I. HEDGES ◽  
J. R. ERTEL ◽  
P. D. QUAY ◽  
P. M. GROOTES ◽  
J. E. RICHEY ◽  
...  

2019 ◽  
Vol 20 (72) ◽  
pp. 360-374 ◽  
Author(s):  
Maria do Socorro Rocha da Silva ◽  
Eduardo Antonio Ríos-Villamizar ◽  
Hillândia Brandão da Cunha ◽  
Sebastião Átila Fonseca Miranda ◽  
Sávio José Filgueiras Ferreira ◽  
...  

The geological diversity of the Amazon Basin, as well as the pluvial regime, influences the characteristics of the waters. To know the water types of the rivers of the Amazon basin, 288 superficial water samples were collected, 94 of them along the Amazon River and 194 in their tributaries, from March 2009 to September 2012. The physical, chemical, and physicochemical properties were analyzed. Rivers with pH between 6.5 and 7.6 and electrical conductivity (40.00 - 80.00 μS cm-1) are water bodies that are influenced by the Andean region (e.g., the Amazon River and some of its right bank tributaries). On the other hand, the rivers with pH in the range of 3.5 to 5.5 and conductivity <30.00 μS cm-1, which are Amazon River’s left bank tributaries, reflect the characteristics of the Guiana Shield. The rivers with pH (6.0 to 7.0), low ionic charge, and conductivity <40.0 μS cm-1, such as the lower Amazon River’s right bank tributaries (Tapajos and Xingu) which are influenced by the Central Brazilian Shield, and also the middle/upper Amazon River’s right bank tributaries (Tefé, Coari and Jutaí).


Check List ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 397 ◽  
Author(s):  
Bradley J. W. Davis ◽  
Scott T. Olmstead

We present new distribution records for Topaza pella (Linnaeus, 1758) in the southern reaches of the Amazon Basin in Brazil. The two new localities presented for the species elucidate its range in southern Pará and northern Mato Grosso states, and in consideration of recent records elsewhere south of the Amazon River, suggest that the species is widely distributed across suitable habitat throughout the Brazilian Amazon.


2022 ◽  
Vol 92 (1) ◽  
pp. 32-49
Author(s):  
Jonathan Ledesma ◽  
Cecilia E. Del Papa ◽  
Patricio Payrola

Abstract The Puna–Altiplano Plateau of the Central Andes is the second-highest plateau in the world (after Tibet), with a mean elevation of 4000 m.a.s.l. and an arid to hyperarid climate. Uplift of the Puna–Altiplano Plateau has affected lower-level atmospheric circulation, acting as a barrier to humid easterly winds from the Amazon basin and favoring an across-strike precipitation gradient resulting in a humid climate towards the east of the plateau and an arid to hyperarid climate in the orogen's interior. In the modern climate, the Bolivian High anticyclone regulates upper troposphere circulation, but little is known about the high-altitude tropospheric circulation of the past. This work focuses on the eolian record of the San Antonio de los Cobres basin along the eastern border of the Puna Plateau, NW Argentina, with the aim of analyzing its origin and thus elucidating the late Miocene winds. The eolian deposits are constrained by 7.8 Ma (K/Ar and U/Pb) and 6.4 Ma (U/Pb) ignimbrites at the nearly basal and upper contacts, respectively. Based on stratigraphic, sedimentological, and provenance analysis of the eolian units, we have identified three main facies associations (FAs): FA1) cross-stratified sandstones with large- to small-scale tabular, planar cross-bedding and with trough cross-stratification; FA2) sandstones with planar to low-angle stratification associated with thinly laminated ripple sandstone strata; FA3) medium- to coarse-grained massive sandstones associated with pebbly to bouldery, matrix-supported conglomerates and clast-supported conglomerates. The lateral and vertical facies assemblages indicate a dune field confined to topographic depressions dominated by transverse dunes with straight and sinuous crestlines that laterally grade into sandsheets associated with ephemeral streams. Paleoflows, lithotypes, and grain-size determinations indicate a persistent north-northwest provenance and wind velocities of 24–38 km/h (with maximum velocities of 55–75 km/h). The results of our analysis coupled with data from previous studies indicates that, for at least the last ca. 8 Myr, the winds have been blowing constantly from the north-northwest with an intensity similar to the present. This implies that the paleo-atmospheric circulation had a similar pattern to the present-day one. Therefore, we conclude that the upper-troposphere circulation in the Puna Plateau of NW Argentina was already regulated by the Bolivian High anticyclone during the Miocene, generating constant north-northwesterly winds.


Author(s):  
Jose A. Marengo ◽  
Carlos A. Nobre

The Amazon region is of particular interest because it represents a large source of heat in the tropics and has been shown to have a significant impact on extratropical circulation, and it is Earth’s largest and most intense land-based convective center. During the Southern Hemisphere summer when convection is best developed, the Amazon basin is one of the wettest regions on Earth. Amazonia is of course not isolated from the rest of the world, and a global perspective is needed to understand the nature and causes of climatological anomalies in Amazonia and how they feed back to influence the global climate system. The Amazon River system is the single, largest source of freshwater on Earth. The flow regime of this river system is relatively unimpacted by humans (Vörösmarty et al. 1997 a, b) and is subject to interannual variability in tropical precipitation that ultimately is translated into large variations in downstream hydrographs (Marengo et al. 1998a, Vörösmarty et al. 1996, Richey et al. 1989a, b). The recycling of local evaporation and precipitation by the forest accounts for a sizable portion of the regional water budget (Nobre et al. 1991, Eltahir 1996), and as large areas of the basin are subject to active deforestation there is grave concern about how such land surface disruptions may affect the water cycle in the tropics (see reviews in Lean et al. 1996). Previous studies have emphasized either how large-scale atmospheric circulation or land surface conditions can directly control the seasonal changes in rainfall producing mechanisms. Studies invoking controls of convection and rainfall by large-scale circulation emphasize the relationship between the establishment of upper-tropospheric circulation over Bolivia and moisture transport from the Atlantic ocean for initiation of the wet season and its intensity (see reviews in Marengo et al. 1999). On the other hand, Eltahir and Pal (1996) have shown that Amazon convection is closely related to land surface humidity and temperature, while Fu et al. (1999) indicate that the wet season in the Amazon basin is controlled by both changes in land surface temperature and the sea surface temperature (SST) in the adjacent oceans, depending if the region is north-equatorial or southern Amazonia.


Sign in / Sign up

Export Citation Format

Share Document