Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas

2021 ◽  
pp. 103735
Author(s):  
Yulan Zhang ◽  
Tanguang Gao ◽  
Shichang Kang ◽  
Donghui Shangguan ◽  
Xi Luo
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2605 ◽  
Author(s):  
Huamin Zhang ◽  
Mingjun Ding ◽  
Lanhui Li ◽  
Linshan Liu

Based on daily observation records at 277 meteorological stations on the Tibetan Plateau (TP) and its surrounding areas during 1970–2017, drought evolution was investigated using the Standardized Precipitation Evapotranspiration Index (SPEI). First, the spatiotemporal changes in the growing season of SPEI (SPEIgs) were re-examined using the Mann–Kendall and Sen’s slope approach—the piecewise linear regression and intensity analysis approach. Then, the persistence of the SPEIgs trend was predicted by the Hurst exponent. The results showed that the SPEIgs on the TP exhibited a significant increasing trend at the rate of 0.10 decade−1 (p < 0.05) and that there is no significant trend shift in SPEIgs (p = 0.37), indicating that the TP tended to undergo continuous wetting during 1970–2017. In contrast, the areas surrounding the TP underwent a significant trend shift from an increase to a decrease in SPEIgs around 1984 (p < 0.05), resulting in a weak decreasing trend overall. Spatially, most of the stations on the TP were characterized by an increasing trend in SPEIgs, except those on the Eastern fringe of TP. The rate of drought/wet changes was relatively fast during the 1970s and 1980s, and gradually slowed afterward on the TP. Finally, the consistent increasing trend and decreasing trend of SPEIgs on the TP and the area East of the TP were predicted to continue in the future, respectively. Our results highlight that the TP experienced a significant continuous wetting trend in the growing season during 1970–2017, and this trend is likely to continue.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jiali Luo ◽  
Wenjun Liang ◽  
Pingping Xu ◽  
Haiyang Xue ◽  
Min Zhang ◽  
...  

Tropopause fold is the primary mechanism for stratosphere-troposphere exchange (STE) at the midlatitudes. Investigation of the features of tropopause folds over the Tibetan Plateau (TP) is important since the TP is a hotspot in global STE. In this study, we investigated seasonal features of the tropopause fold events over the TP using the 40-year ERA-Interim reanalysis data. The development of a tropopause folding case is specifically examined. The results show that shallow tropopause folds occur mostly in spring, while medium and deep folds occur mostly in winter. The multiyear mean monthly frequency of shallow tropopause folds over the TP reaches its maximum value of about 7% in May and then decreases gradually to its minimum value of 1% in August and increases again since September. Deep folds rarely occur in summer and autumn. Both the seasonal cycle and seasonal distribution of total tropopause folds over the TP are dominated by shallow folds. The relative high-frequency areas of medium and deep folds are located over the southern edge of the TP. The westerly jet movement controls the displacement of the high-frequency folding region over the TP. The region of high-frequency tropopause folds is located in the southern portion of the plateau in spring and moves northward in summer. The jet migrates back to the south in autumn and is located along about 30°N in winter, and the region where folds occur most frequently also shifts southward correspondingly. A medium fold event that occurred on 29 December 2018 is used to demonstrate the evolution of a tropopause fold case over the TP in winter; that is, the folding structure moves from west to east, the tropopause pressure is greater than 320 hPa over the folding region, while it is about 200 hPa in the surrounding areas, and the stratospheric air with high potential vorticity (PV) is transported from the high latitudes to the plateau by meridional winds. A trajectory model result verifies the transport pathway of the air parcels during the intrusion event.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chongjin Zhao ◽  
Luolei Zhang ◽  
Peng Yu ◽  
Xi Xu

The Songpan−Aba region is located on the northeastern edge of the Tibetan Plateau. Tectonically, the area is surrounded by the West Qinling orogenic belt in the north, the Longmenshan orogenic belt in the southeast, and the East Kunlun and Sanjiang orogenic belts in the west and southwest, forming a triangle that provides an ideal location to study the crust-mantle structure and deep tectonics of the eastward extrusion of the Tibetan Plateau. In this study, the magnetic and electrical structures of the Songpan−Aba area were investigated by inversion using high-precision magnetic anomaly and magnetotelluric data to obtain the subsurface magnetization inversion intensity and resistivity of Songpan–Aba and adjacent areas. The results revealed a continuous magnetic layer up to 20 km below Songpan–Aba and its surrounding areas in the south, possibly originating from a magma root southwest of the Longmenshan massif. In the West Qinling, Songpan–Aba, and Longmenshan areas, pervasive low-resistance, weakly magnetic, or magnetic layers were identified below 20 km that might be formed from the molten mantle material extruded from the eastern edge of the Tibetan Plateau.


Author(s):  
Guoning Wan ◽  
Meixue Yang ◽  
Zhaochen Liu ◽  
Xuejia Wang ◽  
Xiaowen Liang

The Tibetan Plateau(TP) is known as &lsquo;the water tower of Asian&rsquo;, its precipitation variation play an important role in the eco-hydrological processes and water resources regimes. based on the monthly mean precipitation data of 65 meteorological stations over the Tibetan Plateau and the surrounding areas from 1961-2015,variations, trends and temporal-spatial distribution were analyzed, furthermore, the possible reasons were also discussed preliminarily. The main results are summarized as follows: the annual mean precipitation in the TP is 465.54mm during 1961-2015, among four seasons, the precipitation in summer accounts for 60.1% of the annual precipitation, the precipitation in summer half year (May.- Oct.) accounts for 91.0% while that in winter half year (Nov.- Apr.) only accounts for 9.0%; During 1961-2015, the annual precipitation variability is 0.45mm/a and the seasonal precipitation variability is 0.31mm/a, 0.13mm/a, -0.04mm/a and 0.04mm/a in spring, summer, autumn and winter respectively on the TP; The spatial distribution of precipitation can be summarized as decreasing from southeast to northwest in the TP, the trend of precipitation is decreasing with the increase of altitude, but the correlation is not significant. The rising of air temperature and land cover changes may cause the precipitation by changing the hydrologic cycle and energy budget, furthermore, different pattern of atmospheric circulation can also influence on precipitation variability in different regions.


Sign in / Sign up

Export Citation Format

Share Document