scholarly journals A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U Pb detrital zircon age distributions

2022 ◽  
Vol 224 ◽  
pp. 103885
Author(s):  
Stephen J. Puetz ◽  
Kent C. Condie
2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2016 ◽  
Vol 448 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Tianchen He ◽  
Ying Zhou ◽  
Pieter Vermeesch ◽  
Martin Rittner ◽  
Lanyun Miao ◽  
...  

2009 ◽  
Vol 327 (1) ◽  
pp. 239-269 ◽  
Author(s):  
R. Damian Nance ◽  
J. Duncan Keppie ◽  
Brent V. Miller ◽  
J. Brendan Murphy ◽  
Jaroslav Dostal
Keyword(s):  

2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


2020 ◽  
pp. 1-17
Author(s):  
Bo Hui ◽  
Yunpeng Dong ◽  
Feifei Zhang ◽  
Shengsi Sun ◽  
Shuai He

Abstract The Yangtze Block in South China constitutes an important Precambrian landmass in the present East Asian continent. The Neoproterozoic sedimentary successions of the Hengdan Group in the NW Yangtze Block record essential information for deciphering the Neoproterozoic tectonics along the NW margin. However, its depositional age, provenance and tectonic properties remain uncertain. Here, a combined analysis of detrital zircon U–Pb dating and geochemistry is performed on representative samples from the Hengdan Group. Concordant dating results of samples from the bottom and upper parts constrain the maximum depositional age at c. 720 Ma. Detrital zircon age patterns of samples reveal a uniformly pronounced age peak at c. 915–720 Ma, which is consistent with the magmatic pulses in domains at the NW end of the Yangtze Block. In addition, these samples display left-sloping post-Archaean Australian shale (PAAS)-normalized rare-earth element patterns and variable trace element patterns, resembling sediments accumulated in a basin related to an active continental margin geodynamic setting. Provenance analysis reveals that the main sources featured intermediate to felsic components, which experienced rapid erosion and sedimentation. These integrated new investigations, along with previous compilations, indicate that the Hengdan Group might have been deposited in a fore-arc basin controlled by subduction beneath the Bikou Terrane. Thus, such interpretation further supports proposals for subduction-related tectonics along the western margin of the Yangtze Block during the early Neoproterozoic.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 637-640 ◽  
Author(s):  
G. Gutiérrez-Alonso ◽  
J. Fernández-Suárez ◽  
Alan S. Collins ◽  
I. Abad ◽  
F. Nieto

Abstract The 40Ar/39Ar age data on single detrital muscovite grains complement U-Pb zircon ages in provenance studies, as micas are mostly derived from proximal sources and record low-temperature processes. Ediacaran and Cambrian sedimentary rocks from northwest Iberia contain unmetamorphosed detrital micas whose 40Ar/39Ar age spectra suggest an Amazonian–Middle American provenance. The Ediacaran sample contained only Neoproterozoic micas (590–783 Ma), whereas the Cambrian sample contained three age groups: Neoproterozoic (550–640 Ma, Avalonian–Cadomian–Pan African), Mesoproterozoic- Neoproterozoic boundary (ca. 920–1060 Ma, Grenvillian-Sunsas), and late Paleoproterozoic (ca. 1580–1780 Ma, Rio Negro). Comparison of 40Ar/39Ar muscovite ages with published detrital zircon age data from the same formations supports the hypothesis that the Neoproterozoic basins of northwest Iberia were located in a peri-Amazonian realm, where the sedimentary input was dominated by local periarc sources. Tectonic slivering and strike-slip transport along the northern Gondwanan margin affected both the basins and fragments of basement that were transferred from Amazonian to northern African realms during the latest Neoproterozoic–earliest Cambrian. Exhumation and erosion of these basement sources caused shedding of detritus to the Cambrian basins, in addition to detritus sourced in the continental mainland. The apparent dominance of Rio Negro–aged micas in the Cambrian sandstone suggests the presence of unexposed basement of that age beneath the core of the Ibero-Armorican Arc.


Geology ◽  
2020 ◽  
Author(s):  
Yvette D. Kuiper ◽  
Christopher Hepburn

Newly compiled U-Pb detrital zircon data from eight geographic domains along the eastern Laurentian margin from Newfoundland (Canada) to Alabama (United States) show a highly consistent signature along strike, with only minor local variations. The Precambrian signature is characterized by a small ca. 2.7 Ga population and a major ca. 1.9–0.9 Ga population that peaks at ca. 1.2–1.0 Ga. Detrital zircon populations are from Laurentian Archean crust (ca. 2.7 Ga population), Paleoproterozoic orogens (ca. 1.9–1.6 Ga), the Granite-Rhyolite Province (ca. 1.5–1.4 Ga), and the Elzevir terrane and Grenville Province (ca. 1.3–0.9 Ga). The Mesoproterozoic populations vary in size depending on proximity to the ca. 1.5–1.4 Ga Granite-Rhyolite Province, the ca. 1245–1225 Ma Elzevir terrane, and the ca. 1.2–0.9 Ga Grenville Province. A middle Ordovician zircon population varies in size along strike depending on input from the Taconic orogenic belt, but it is strongest in the northern Appalachians. Because of the general along-strike consistency in detrital zircon age populations, the compilation of all 7534 concordant U-Pb detrital zircon data can be used in future U-Pb detrital zircon studies as an indicator for eastern Laurentian margin sources.


Sign in / Sign up

Export Citation Format

Share Document