scholarly journals Comparison of culture-independent and dependent approaches for identification of native arsenic-resistant bacteria and their potential use for arsenic bioremediation

2020 ◽  
Vol 205 ◽  
pp. 111267
Author(s):  
Wahid Ali Hamood Altowayti ◽  
Hafedh Almoalemi ◽  
Shafinaz Shahir ◽  
Norzila Othman
1992 ◽  
Vol 6 (4) ◽  
pp. 415-420 ◽  
Author(s):  
Shigeru Maeda ◽  
Akira Ohki ◽  
Kuniaki Miyahara ◽  
Kensuke Naka ◽  
Shiro Higashi

2017 ◽  
Author(s):  
Taylor K Dunivin ◽  
Justine Miller ◽  
Ashley Shade

Arsenic (As), a toxic element, has impacted life since early Earth. Thus, microorganisms have evolved many As resistance and tolerance mechanisms to improve their survival outcomes given As exposure. We isolated As resistant bacteria from Centralia, PA, the site of an underground coal seam fire that has been burning since 1962. From a 57.4°C soil collected from a vent above the fire, we isolated 25 unique aerobic arsenic resistant bacteria spanning six genera. We examined their diversity, resistance gene content, transformation abilities, inhibitory concentrations, and growth phenotypes. Although As concentrations were low at the time of soil collection (2.58 ppm), isolates had high minimum inhibitory concentrations (MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most isolates were capable of arsenate reduction. We screened isolates (PCR and sequencing) using 12 published primer sets for six As resistance genes (AsRG). Genes encoding arsenate reductase (arsC) and arsenite efflux pumps (arsB, ACR3(2)) were present, and phylogenetic incongruence between 16S rRNA genes and AsRG provided evidence for horizontal gene transfer. A detailed investigation of differences in isolate growth phenotypes across As concentrations (lag time to exponential growth, maximum growth rate, and maximum OD590) showed a relationship with taxonomy, providing information that could help to predict an isolate’s performance given arsenic exposure in situ. Our results suggest that considering taxonomically-linked tolerance and potential for resistance transferability from the rare biosphere will inform strategies for microbiological management and remediation of environmental As and contribute to a larger consideration of As-exposed microbial ecology.


2017 ◽  
Author(s):  
Sean M. Kearney ◽  
Sean M. Gibbons ◽  
Mathilde Poyet ◽  
Thomas Gurry ◽  
Kevin Bullock ◽  
...  

AbstractEndospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endosporesin situand how sporulation varies across individuals and over time. Here, we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.


2012 ◽  
Vol 28 (2) ◽  
pp. 80-83 ◽  
Author(s):  
Nazmul Ahsan ◽  
Kashfia Faruque ◽  
Farah Shamma ◽  
Nazrul Islam ◽  
Anwarul A Akhand

The main objective of this work was to isolate arsenic resistant bacteria from contaminated soil, followed by screening for their ability to adsorb arsenic. Six bacterial isolates (S1 to S6) were obtained from arsenic contaminated soil samples and among these, five (S1, S2, S3, S5 and S6) were characterized as bacillus and the rest one (S4) was cocci depending on shape. All the isolates except S6 produced extracellular polymeric substances (EPS) in the culture medium and displayed arsenic adsorbing activities demonstrated by adsorption of around 90% from initial concentration of 1 mg/L sodium arsenite. To clarify the role of EPS, we killed the bacteria that produced EPS and used these killed bacteria to see whether they could still adsorb arsenic or not. We found that they could adsorb arsenic similarly like that of EPS produced live bacterial isolates. From the observation it is concluded that these isolates showed potentiality to adsorb arsenic and hence might be used for bioremediation of arsenic. DOI: http://dx.doi.org/10.3329/bjm.v28i2.11821 Bangladesh J Microbiol, Volume 28, Number 2, December 2011, pp 80-83


2014 ◽  
Vol 32 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ramansu Goswami ◽  
Suprabhat Mukherjee ◽  
Vipin Singh Rana ◽  
Dhira Rani Saha ◽  
Rajagopal Raman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document