Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes

2014 ◽  
Vol 72 ◽  
pp. 11-24 ◽  
Author(s):  
William J. Mitsch ◽  
Li Zhang ◽  
Evan Waletzko ◽  
Blanca Bernal
2021 ◽  
Author(s):  
Fabio Massimo Delle Grazie ◽  
Laurence Gill

<p>Turloughs, the focus of this study, are ephemeral lakes and they are mostly groundwater dependent. They are present mostly in Ireland and have been compared hydrologically to polje for the period inundation and lacustrine deposits. They are flooded for some periods across the year (typically in the winter) but usually dry up in summer months. Turloughs are protected under the Water Framework Directive (WFD, Directive 2000/60/EC) and the EU Habitats Directive (92/43/EEC). Ecosystem services can be defined as the conditions and processes through which natural ecosystems sustain and fulfil human life. These can be classified as provisioning, regulating, and cultural and examples of them are water and raw materials production, flood risk attenuation, carbon sequestration. The determination of the ecosystem services can help analyse different scenarios linked to pressures like road drainage schemes, water supply and wastewater disposal.</p><p> </p><p>Seven turloughs (Blackrock, Lough Coy, Lough Aleenaun, Lough Gealain, Caranavoodaun, Skealoghan, Coolcam) have been selected from a previous study and samples of waters were collected monthly to determine carbon and nutrients. Carbon and nutrients were also determined on soil samples taken from the turlough catchment. The overwhelming majority of wetlands act as long-term sinks for CO<sub>2</sub>. To determine whether this is the case for some of the turloughs in the study, greenhouse gases from soils and water were monitored and balances were worked out. Ecosystem services were quantified through various models which had to be adapted to the special conditions present in the turloughs.</p><p> </p><p>The seven turloughs have different hydrological characteristics. Hydrology is the main driver of vegetation distribution therefore ommunities are distributed in zones arranged along the flooding gradient. Aquatic invertebrates also show a succession of communities through the hydroperiod.</p><p> </p><p>The seven turloughs studied provide a variety of hydrological characteristics, habitat, soil and vegetation and offer different ecosystem services. Each ecosystem service was quantified using appropriate models. Almost all the turloughs are at risk from anthropic activities and potentially from climate change. Important ecosystem services for these turloughs are flood mitigation, nutrient retention, carbon sequestration, habitat preservation and recreational activities.</p>


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2072
Author(s):  
Ying Fang ◽  
Tianlin Zhai ◽  
Xiaodong Zhao ◽  
Kun Chen ◽  
Baishu Guo ◽  
...  

Ecosystem services are characterized by region and scale, and contribute to human welfare. Taking Yantai city, a typical bay city in China, as the example, its three representative ecosystem services: food supply (FS), carbon sequestration (CS) and water yield (WY) were chosen as study targets. Based on analyzation of six different aspects of the supply and variation characteristic of demand, this study tried to propose advices for comprehensive improvement of ecosystem services for spatial optimization. The results showed that: (1) ecosystem services supply was strong in central and southern areas of Yantai, while the northern coastal areas were relatively weak; (2) synergistic relationships were found of FS-CS, FS-WY and CS-WY both in 2009 and 2015, with the strongest one for FS-WY. Additionally, in the synergistic relationships, each pair of ecosystem services was dominated by one ecosystem service; (3) most of the three pairs of synergistic relationships had the tendency to strengthen with larger scales; (4) four ecosystem demands changing areas were observed and comprehensive improvement suggestions for them were proposed. This work provides a new attempt to improve ecosystem services based on its supply-demand relationship, which will give a baseline reference for related studies in Yantai city, as well as other similar bay cities.


Trees ◽  
2021 ◽  
Author(s):  
H. Pretzsch ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
S. Pauleit ◽  
T. Rötzer

Abstract Key message A model for sustainable planning of urban tree stocks is proposed, incorporating growth, mortality, replacement rates and ecosystem service provision, providing a basis for planning of urban tree stocks. Abstract Many recent studies have improved the knowledge about urban trees, their structures, functions, and ecosystem services. We introduce a concept and model for the sustainable management of urban trees, analogous to the concept of sustainable forestry developed by Carl von Carlowitz and others. The main drivers of the model are species-specific tree diameter growth functions and mortality rates. Based on the initial tree stock and options for the annual replanting, the shift of the distribution of the number of trees per age class can be predicted with progressing time. Structural characteristics such as biomass and leaf area are derived from tree dimensions that can be related to functions such as carbon sequestration or cooling. To demonstrate the potential of the dynamic model, we first show how different initial stocks of trees can be quantitatively assessed by sustainability indicators compared to a target stock. Second, we derive proxy variables for ecosystem services (e.g. biomass for carbon sequestration, leaf area for deposition and shading) from a given distribution of the number of trees per age class. Third, we show by scenario analyses how selected ecosystem services and functions may be improved by combining complementary tree species. We exercise one aspect (cooling) of one ecosystem service (temperature mitigation) as an example. The approach integrates mosaic pieces of knowledge about urban trees, their structures, functions, and resulting ecosystem services. The presented model makes this knowledge available for a sustainable management of urban tree stocks. We discuss the potential and relevance of the developed concept and model for ecologically and economically sustainable planning and management, in view of progressing urbanization and environmental changes.


Author(s):  
Athanase R. Cyamweshi ◽  
Shem Kuyah ◽  
Athanase Mukuralinda ◽  
Catherine W. Muthuri

AbstractAlnus acuminata Kunth. (alnus) is widely used in agroforestry systems across the globe and is believed to provide multiple ecosystem services; however, evidence is lacking in agroforestry literature to support the perceived benefits, particularly in Rwanda. To understand carbon sequestration potential and other benefits of alnus, a household survey, tree inventory and destructive sampling were conducted in north-western Rwanda. Over 75% of the respondents had alnus trees in their farms. The trees provide stakes for climbing beans, firewood and timber. They also improve soil fertility and control soil erosion. Farmers had between 130 and 161 alnus trees per hectare with an average height of 7.7 ± 0.59 m and diameter at breast height of 16.3 ± 1.39 cm. The largest biomass proportion was found in stems (70.5%) while branches and leaves stock about 16.5 and 13% of the total biomass, respectively. At farm level, aboveground biomass of alnus trees was estimated to be 27.2 ± 0.7 Mg ha−1 representing 13.6 Mg of carbon (C) per hectare. Biomass carbon increased with tree size, from 7.1 ± 0.2 Mg C ha−1 in 3 years old trees to 34.4 ± 2.2 Mg C ha−1 in 10 years old trees. The converse was observed with elevation; biomass carbon decreased with increasing elevation from 21.4 ± 1.29 Mg C ha−1 at low (2011–2110 m) to 9.6 ± 0.75 Mg C ha−1 in the high elevation (> 2510 m). In conclusion, alnus agroforestry significantly contributes to carbon sequestration, although the magnitude of these benefits varies with tree age and elevation. Planting alnus trees on farms can meet local needs for stakes for climbing beans, wood and soil fertility improvement, as well as the global need for regulation of climate change.


2021 ◽  
Vol 13 (16) ◽  
pp. 8710
Author(s):  
Yuchao Zhang ◽  
Steven Loiselle ◽  
Yimo Zhang ◽  
Qian Wang ◽  
Xia Sun ◽  
...  

The largest blue-green infrastructures in industrialized, urbanized and developed regions in China are often multiuse wetlands, located just outside growing urban centers. These areas have multiple development pressures while providing environmental, economic, and social benefits to the local and regional populations. Given the limited information available about the tradeoffs in ecosystem services with respect to competing wetland uses, wetland managers and provincial decision makers face challenges in regulating the use of these important landscapes. In the present study, measurements made by citizen scientists were used to support a comparative study of water quality and wetland functions in two large multiuse wetlands, comparing areas of natural wetland vegetation, tourism-based wetland management and wetland agriculture. The study sites, the Nansha and Tianfu wetlands, are located in two of the most urbanized areas of China: the lower Yangtze River and Pearl River catchments, respectively. Our results indicated that the capacity of wetlands to mitigate water quality is closely related to the quality of the surrounding waters and hydrological conditions. Agricultural areas in both wetlands provided the lowest sediment and nutrient retention. The results show that the delivery of supporting ecosystem services is strongly influenced by the location and use of the wetland. Furthermore, we show that citizen scientist-acquired data can provide fundamental information on quantifying these ecosystem services, providing needed information to wetland park managers and provincial wetland administrators.


One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Ioannis Vogiatzakis ◽  
Savvas Zotos ◽  
Vassilis Litskas ◽  
Paraskevi Manolaki ◽  
Dimitrios Sarris ◽  
...  

Ecosystems deliver a range of services that are important for human well-being. Although Ecosystem Services (ES) assessments have been carried out worldwide in different geographical areas, islands are still under-represented. This research presents the first set of indicators developed for Mapping and Assessment of Ecosystems and their Services (MAES) provided by the ecosystems of Cyprus, as required by the EU Biodiversity Strategy, along with the rationale behind the selection criteria. In total, 269 potential indicators were assessed in terms of data availability at the national/subnational level and their suitability for MAES and were classified using a "traffic light" system on the basis of overall suitability (i.e. conceptually and in terms of datasets). The results showed that 89 indicators (Green indicators) can be directly used for assessing ES in Cyprus. Amongst these 89 Green indicators, 28 are considered to be new additions to the EU MAES list, since they were proposed solely for Cyprus ecosystems, as a result of consultation with local stakeholders. Provisioning and cultural services could be adequately mapped, but lack of data was observed for several regulating services (e.g. erosion, pollution, carbon sequestration). Not all Green indicators, identified herein, are relevant for assessing ES provided by ecosystems in Cyprus, whereas Green indicators which measure similar ES might be redundant. For a given geographical context, there might be relevant (and important) indicators which are not included in the MAES list and this is why consultation with stakeholders is advisable. Knowledge gaps and needs for further improving MAES on the island are also discussed.


2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


Sign in / Sign up

Export Citation Format

Share Document