scholarly journals Forecasting the PV Panel Operating Conditions Using the Design of Experiments Method

2013 ◽  
Vol 36 ◽  
pp. 479-487 ◽  
Author(s):  
F. Hannane ◽  
H. Elmossaoui ◽  
T.V. Nguyen ◽  
P. Petit ◽  
M. Aillerie ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


Author(s):  
J.-P. Charles ◽  
F. Hannane ◽  
H. El-Mossaoui ◽  
A. Zegaoui ◽  
T.V. Nguyen ◽  
...  

2021 ◽  
Author(s):  
Kambiz Vaezzadeh Naderi

In this study, a three-factor, three-level Box-Behnken design with response surface methodology and quadratic programming were used to maximize the total organic carbon (TOC) removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2/VUV system for the treatment of actual slaughterhouse wastewater. The initial TOC concentration (TOCo), the initial concentration of H2O2, and the irradiation time were the three independent variables studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Thus, the optimum conditions to achieve a maximum TOC removal of 46.19% and a minimum H2O2 residual of 1.05% were TOCo of 213 mg/L, H2O2,o of 450 mg/L, and irradiation time of 9 min. The obtained optimal operating conditions were validated with an additional test. Consequently, maximum TOC removal of 45.68% and minimum H2O2 residual of 1.03% were obtained experimentally, confirming the reliability of the statistical model. Keywords: Slaughterhouse Wastewater; Wastewater Treatment; UV-C/H2O2/VUV, Combined Processes; Design of Experiments; Optimization.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4150 ◽  
Author(s):  
Müller ◽  
Zwaygardt ◽  
Rauls ◽  
Hehemann ◽  
Haas ◽  
...  

Herein we discuss polymer electrolyte membrane (PEM) electrolysis stacks and systems we developed that are optimized for direct coupling to a photovoltaic (PV) panel. One advantage of PEM systems is their use of non-corrosive and non-toxic media. Thus, safe outdoor operation can be guaranteed, even in the case of a leakage. The system design was adapted to reduce the number of connection tubes, allowing for a series connection of multiple stacks at low cost and high reliability. One coupled PEM/PV system was tested under various temperature and irradiance conditions. All system components were also thoroughly characterized. The characterization was used to calibrate simple models of the individual components. Finally, the models were used to predict the system’s solar-to-hydrogen efficiency under different operating conditions and to find an optimal configuration for real-world outdoor operation.


Author(s):  
Leonardo Urbiola-Soto ◽  
Raymundo Santibañez-Santoscoy ◽  
Marcelo López-Parra ◽  
Alejandro C. Ramírez-Reivich ◽  
Ricardo Yañez-Valdez

The design process of journal bearings of turbomachines is complex and time-consuming due to the many geometric and physical variables involved. This paper reports on the design of experiments (DOE) and the response surface design of experiments (RSDOE) methods employed on the design of the drive-end and free-end three-lobe journal bearings supporting a centrifugal compressor rotor. The suitability of each technique is discussed. The bearing design variables employed are bearing slenderness ratio, radial clearance, preload, and lubricant inlet temperature. The rotordynamic response variables selected were the critical speed location, the vibrations at critical speed and operating speed for both bearings, and the threshold speed of instability. The use of a nonlinear (quadratic) RSDOE model is justified. An optimization approach combining an SRDOE and rotordynamic finite element modeling is presented. This method leads to arrive to a multivariate model for multi-objective optimization with very few computations. Identification of the dominant design variables and their effects on several response variables allows establishing engineering feasible solutions with focus on manufacturing versus operating conditions tradeoff.


Author(s):  
ADITHYA THADURI ◽  
A. K. VERMA ◽  
GOPIKA VINOD ◽  
M. G. RAJESH ◽  
UDAY KUMAR

Conventionally, reliability prediction of electronic components is carried out using standard handbooks such as MIL STD 217 plus, Telcordia, etc. But these methods fail to provide a realistic estimate of reliability for upcoming technologies. Currently, electronic reliability prediction is moving towards applying the Physics of Failure approach which considers information on process, technology, fabrication techniques, materials used, etc. Industries employ different technologies like CMOS, BJT and BICMOS for various applications. The possibility of chance of failure at interdependencies of materials, processes, and characteristics under operating conditions is the major concern which affects the performance of the devices. They are characterized by several failure mechanisms at various stages such as wafer level, interconnection, etc. For this, the dominant failure mechanisms and stress parameters needs to be identified. Optocouplers are used in input protection of several instrumentation systems providing safety under over-stress conditions. Hence, there is a need to study the reliability and safety aspects of optocouplers. Design of experiments is an efficient and prominent methodology for finding the reliability of the item, as the experiment provides a proof for the hypothesis under consideration. One of the important techniques involved is Taguchi method which is employed for finding the prominent failure mechanisms in semiconductor devices. By physics of failure approach, the factors that are affecting the performance on both environmental and electrical parameters with stress levels for optocouplers are identified. By constructing a 2-stage Taguchi array with these parameters where output parameters decides the effect of top two dominant failure mechanisms and their extent of chance of failure can be predicted. This analysis helps us in making the appropriate modifications considering both the failure mechanisms for the reliability growth of these devices. This paper highlights the application of design of experiments for finding the dominant failure mechanisms towards using physics of failure approach in electronic reliability prediction of optocouplers for application of instrumentation.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 145
Author(s):  
Zeyad A. Haidar ◽  
Jamel Orfi ◽  
Zakariya Kaneesamkandi

Solar photovoltaic (PV) applications are gaining a great interest worldwide and dominating the renewable energy sector. However, the solar PV panels’ performance is reduced significantly with the increase in their operating temperature, resulting in a substantial loss of energy production and poor economic scenarios. This research contributes to overcoming the PV performance degradation due to the temperature rise. This work involves experimental and theoretical studies on cooling of PV panels using the evaporative cooling (EC) principle. A new EC design to cool the bottom surface of a PV panel was proposed, fabricated, tested, and modeled. A series of experimentation readings under real conditions showed the effectiveness of the method. A steady state heat and mass transfer model was implemented and compared with the experimental data. Fair agreement between the results of the modelling and experimental work was observed. It was found that the temperature of the PV panel can be decreased by 10 °C and the power improvement achieved was 5%. Moreover, the EC helps to stabilize the panels’ temperature fluctuation, which results in a better regulation of electrical power output and reduces the uncertainty associated with solar PV systems.


Sign in / Sign up

Export Citation Format

Share Document