TWO-STAGE DESIGN OF EXPERIMENTS APPROACH FOR PREDICTION OF RELIABILITY OF OPTOCOUPLERS

Author(s):  
ADITHYA THADURI ◽  
A. K. VERMA ◽  
GOPIKA VINOD ◽  
M. G. RAJESH ◽  
UDAY KUMAR

Conventionally, reliability prediction of electronic components is carried out using standard handbooks such as MIL STD 217 plus, Telcordia, etc. But these methods fail to provide a realistic estimate of reliability for upcoming technologies. Currently, electronic reliability prediction is moving towards applying the Physics of Failure approach which considers information on process, technology, fabrication techniques, materials used, etc. Industries employ different technologies like CMOS, BJT and BICMOS for various applications. The possibility of chance of failure at interdependencies of materials, processes, and characteristics under operating conditions is the major concern which affects the performance of the devices. They are characterized by several failure mechanisms at various stages such as wafer level, interconnection, etc. For this, the dominant failure mechanisms and stress parameters needs to be identified. Optocouplers are used in input protection of several instrumentation systems providing safety under over-stress conditions. Hence, there is a need to study the reliability and safety aspects of optocouplers. Design of experiments is an efficient and prominent methodology for finding the reliability of the item, as the experiment provides a proof for the hypothesis under consideration. One of the important techniques involved is Taguchi method which is employed for finding the prominent failure mechanisms in semiconductor devices. By physics of failure approach, the factors that are affecting the performance on both environmental and electrical parameters with stress levels for optocouplers are identified. By constructing a 2-stage Taguchi array with these parameters where output parameters decides the effect of top two dominant failure mechanisms and their extent of chance of failure can be predicted. This analysis helps us in making the appropriate modifications considering both the failure mechanisms for the reliability growth of these devices. This paper highlights the application of design of experiments for finding the dominant failure mechanisms towards using physics of failure approach in electronic reliability prediction of optocouplers for application of instrumentation.

Author(s):  
ADITHYA THADURI ◽  
A. K. VERMA ◽  
V. GOPIKA ◽  
RAJESH GOPINATH ◽  
UDAY KUMAR

Due to several advancements in the technology trends in electronics, the reliability prediction by the constant failure methods and standards no longer provide accurate time to failure. The physics of failure methodology provides a detailed insight on the operation, failure point location and causes of failure for old, existing and newly developed components with consideration of failure mechanisms. Since safety is a major criteria for the nuclear industries, the failure modeling of advanced custom made critical components that exists on signal conditioning module are need to be studied with higher confidence. One of the components, constant fraction discriminator, is the critical part at which the failure phenomenon and modeling by regression is studied in this paper using physics of failure methodology.


Author(s):  
Hui Peng Ng ◽  
Ghim Boon Ang ◽  
Chang Qing Chen ◽  
Alfred Quah ◽  
Angela Teo ◽  
...  

Abstract With the evolution of advanced process technology, failure analysis is becoming much more challenging and difficult particularly with an increase in more erratic defect types arising from non-visual failure mechanisms. Conventional FA techniques work well in failure analysis on defectively related issue. However, for soft defect localization such as S/D leakage or short due to design related, it may not be simple to identify it. AFP and its applications have been successfully engaged to overcome such shortcoming, In this paper, two case studies on systematic issues due to soft failures were discussed to illustrate the AFP critical role in current failure analysis field on these areas. In other words, these two case studies will demonstrate how Atomic Force Probing combined with Scanning Capacitance Microscopy were used to characterize failing transistors in non-volatile memory, identify possible failure mechanisms and enable device/ process engineers to make adjustment on process based on the electrical characterization result. [1]


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


2013 ◽  
Vol 36 ◽  
pp. 479-487 ◽  
Author(s):  
F. Hannane ◽  
H. Elmossaoui ◽  
T.V. Nguyen ◽  
P. Petit ◽  
M. Aillerie ◽  
...  

Author(s):  
Kemal Cagatay Selvi

In this study, static stress-deformation analyzes (in terms of material strengths) were presented comparatively through a FEM-based simulation of the subsoiler and paraplow legs designed in a three-dimensional CAD environment. In general, both soil tillage implements with high energy requirements are being used to remove the soil compaction problem on agricultural land. The operating conditions of the implements were simulated using a FEM-based simulation program (Ansys-16). The results of static analysis obtained from the Finite Element Method (FEM) were evaluated on some different materials used in the shank design of both implements and the results were given comparatively. According to the analysis results, the maximum equivalent stress was in paraplow shank foot 122 MPa which is used C-60 material and the maximum vertical dis-placement is 0,00014 mm in the position of shank foot of subsoiler


2002 ◽  
Vol 124 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Dale E. Van Zante ◽  
John J. Adamczyk ◽  
Anthony J. Strazisar ◽  
Theodore H. Okiishi

Rotor wakes are an important source of loss in axial compressors. The decay rate of a rotor wake is largely due to both mixing (results in loss) and stretching (no loss accrual). Thus, the actual loss associated with rotor wake decay will vary in proportion to the amounts of mixing and stretching involved. This wake stretching process, referred to by Smith (1996) as recovery, is reversible and for a 2-D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. It will be shown that for the rotor/stator spacing typical of core compressors, wake stretching is the dominant wake decay process within the stator with viscous mixing playing only a secondary role. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated alone and in a stage configuration at near peak efficiency and near stall operating conditions. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model and laser anemometer measurements indicate that rotor wake straining (stretching) is the primary decay process in the stator passage. Some implications of these results on compressor stage design are discussed.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000037-000042
Author(s):  
Henning Hübner ◽  
Christian Ohde ◽  
Dirk Ruess

Abstract Electrolytic metal deposition is a key process step in the manufacturing of vertical and horizontal interconnections used in today's PCBs and IC substrates on one hand and advanced packaging applications on the other hand. Historically both application areas were clearly defined and separated by different requirements in feature sizes and substrate formats. PCBs and IC substrates were based on organic large scale substrates with rather large features while advanced packaging technology is wafer based with the capability to incorporate fine features down to a few microns. The ever increasing demand of higher performance, lower cost and thinner end user devices like smartphones require intense developments and innovation in all areas of the electronic component design including the substrate and chip packaging. Latest manufacturing technologies in both areas like fan-out wafer level packaging and advanced substrates are constantly emerging and promise to be a critical piece to meet these requirements. As a consequence both areas are currently merging while creating a new application segment. This segment combines the request of small feature sizes with the manufacturability on large scale substrates. Obviously many of the traditional process technologies like plating and available equipment cannot be easily adopted and need certain developments, adaptions and improvements. In this respect, a key challenge in the area of electrolytic metal deposition is the combination of various challenging requirements: creation of feature sizes down to 2μm L/S with heterogeneous feature density on large substrates up to 600mm at excellent metal thickness uniformity and high plating speed. The paper presents latest studies and conclusions in critical performance areas of the plating process such as electrolyte fluid dynamics, impact of anode design, pulse reverse rectification and newly designed electrolytes. Finally latest test results of optimized process conditions will be discussed in detail with different feature sizes providing data of within die and within substrate uniformity. All tests are done on panel level, both organic and glass substrates. The latest findings and achievements of the discussed panel based plating process technology will support the industry to develop panel based packaging processes that meet both technical and commercial requirements.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000189-000195
Author(s):  
Milton Watts ◽  
K. Rob Harker

Quartzdyne Electronics has invested millions of device test hours in life testing of circuits in both powered and un-powered tests. In addition to time at temperature, these tests include thermal cycling and high impact drop testing. Recent projects have required the use of larger packages and components as we have expanded the variety of circuits that we build. It is desirable to predict the effects of these changes on long-term reliability before investing in tooling. In this study we will compare a new design which contains these larger components to the simpler, smaller designs for which we have extensive life-test data. Using a physics-of-failure approach, component mounting stresses will be analyzed using finite element modeling. These results will be compared to pre and post-aging shear strengths of actual components of varying sizes. Aging models will then be developed to predict the reliability of the new design based on the comparative stress margins of the individual components coupled with circuit complexity. Once validated, the aging models will enable reliability prediction and trade-off analysis for future designs.


Sign in / Sign up

Export Citation Format

Share Document