scholarly journals Comprehensive study on the effect of CO2 on coal pyrolysis at fast heating rate

2021 ◽  
Vol 7 ◽  
pp. 1369-1378
Author(s):  
Huanying Chi ◽  
Hanjian Li ◽  
Kai Xu ◽  
He Liu ◽  
Sheng Su ◽  
...  
Author(s):  
Chi Huanying ◽  
Li Hanjian ◽  
Su Sheng ◽  
Abdulmajid Abdullahi Shagali ◽  
An Xiaoxue ◽  
...  
Keyword(s):  

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 877 ◽  
Author(s):  
Alexandros Banis ◽  
Eliseo Hernandez Duran ◽  
Vitaliy Bliznuk ◽  
Ilchat Sabirov ◽  
Roumen H. Petrov ◽  
...  

The effect of ultra-fast heating on the microstructures of steel has been thoroughly studied over the last year as it imposes a suitable alternative for the production of ultra high strength steel grades. Rapid reheating followed by quenching leads to fine-grained mixed microstructures. This way the desirable strength/ductility ratio can be achieved while the use of costly alloying elements is significantly reduced. The current work focuses on the effect of ultra-fast heating on commercial dual phase grades for use in the automotive industry. Here, a cold-rolled, low-carbon, medium-manganese steel was treated with a rapid heating rate of 780 °C/s to an intercritical peak temperature (760 °C), followed by subsequent quenching. For comparison, a conventionally heated sample was studied with a heating rate of 10 °C/s. The initial microstructure of both sets of samples consisted of ferrite, pearlite and martensite. It is found that the very short heating time impedes the dissolution of cementite and leads to an interface-controlled α → γ transformation. The undissolved cementite affects the grain size of the parent austenite grains and of the microstructural constituents after quenching. The final microstructure consists of ferrite and martensite in a 4/1 ratio, undissolved cementite and traces of austenite while the presence of bainite is possible. Finally, it is shown that the texture is not strongly affected during ultra-fast heating, and the recovery and recrystallization of ferrite are taking place simultaneously with the α → γ transformation.


2012 ◽  
Vol 550-553 ◽  
pp. 2758-2762 ◽  
Author(s):  
Xi Jie Chu ◽  
Yong Gang Wang ◽  
Li Hong Zhao

The pyrolysis tests of Shenhua coal and Shenhua direct liquefaction residue have been carried out using thermogravimetric at the differential heating rate. The kinetic parameters k and E were calculated using DAEM method. Results show DAME model can describe the pyrolysis behavior of Shenhua coal within the range of 20% to 95%, the activation energy of coal pyrolysis ranges from 53.98 to 279.38 kJ/mol, and DAME model can describe the behavior of Shenhua direct liquefaction residue within the range of 10% to 80%, the activation energy of residue pyrolysis is about 170 kJ/mol. The results of which are basically consistent with the experimental data.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6359
Author(s):  
Elena David

Conversion experiments of wet and dry walnut shells were performed, the influence of moisture content on the hydrogen yield in the gas fraction was estimated and the resulted biochar structure was presented. Measurements of the biochar structures were performed using X-ray diffraction and scanning electron microscopy methods. The results demonstrate that heating rate played a key role in the pyrolysis process and influenced the biochar structure. Under fast heating rate, the interactions between the water vapors released and other intermediate products, such as biochar was enhanced and consequently more hydrogen was generated. It could also be observed that both biochar samples, obtained from wet and dry walnut shells, had an approximately smooth surface and are different from the rough surface of the raw walnut shell, but there are not obvious differences in shape and pores structure between the two biochar samples. The increasing of the biochar surface area versus pyrolysis temperature is due tothe formation of micropores in structure. The biochar shows a surface morphology in the form of particles with rough, compact and porous structure. In addition the biochar structure confirmed that directly pyrolysis of wet walnut shells without predried treatment has enhanced the hydrogen content in the gas fraction.


2011 ◽  
Vol 695 ◽  
pp. 493-496 ◽  
Author(s):  
Yong Hui Song ◽  
Jian Mei She ◽  
Xin Zhe Lan ◽  
Jun Zhou

The pyrolysis characteristics of Jianfanggou(JFG) coal was studied using a thermo-gravimetric analyzer and the pyrolysis kinetic parameters were calculated at the different heating rate. The results showed the DTG curves under different heating rate had three peaks and the corresponding temperature were 100°C, 470°C and 750°C, the pyrolysis process can be divided into three stages conclusively. The maximum weight loss rate at 470°C indicated the major weight loss occurred in the second stage. The Tb, Tf and T∞ obtained under experiment situation. The results of the JFG coal pyrolysis kinetic showed the Tb, Tf and T∞ increased gradually with the accretion of the heating rate. In the meantime, the variation of frequency factor was consistent with the trend of activation energy.


2016 ◽  
Vol 877 ◽  
pp. 153-158
Author(s):  
Xiang Xiao ◽  
Cheng Liu ◽  
Jian Zhao ◽  
Wei Li

In the present research, a comprehensive study on the effect of the homogenization treatment on the characteristics of dispersoid and recrystallization behavior in an Al-Zn-Mg-Cu-Zr alloy has been conducted by means of optical micrography, scanning electron micrography and transmission electron micrography. The influence of three process parameters of the homogenization treatment, first stage holding temperature, holding time and heating rate, on the dispersoid characteristics has been throughly studied. The result shows that holding at 400°C for sufficient time is highly beneficial for obtaining fine and uniformly distributed Al3Zr particles. Compared with the high heating rate treatment, the slow one apparently leads to significantly smaller Al3Zr dispersoids, the dimension of the dispersoids decreases from 35 nm to 22 nm, and the number density of Al3Zr particle in the center of the grains increases from 13/μm2 to 35/μm2. The percentage of recrystallized grains of the alloy is found to be affected by dispersoid distribution.


2007 ◽  
Vol 48 (5) ◽  
pp. 919-923 ◽  
Author(s):  
Susana Dias ◽  
Fernando Almeida Costa Oliveira ◽  
Bernard Granier ◽  
Jean-Marie Badie ◽  
Jorge Cruz Fernandes ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1790-1794
Author(s):  
Quanrun Liu ◽  
Hao Xia

The pesent paper decribed the effects of additive on temperature rising characteristic during coal pyrolysis at different temperature in microwave field. Different mixture rate of carboncoal with coal and different final temperature on coal pyrolysis tempereature rising characteristics were studied in the work. The results indicate: Coal is a poorly microwave absorbing material, and its pyrolysis in microwave field need to add a certain amount of microwave absorbent for higher heating rate; Because carbocoal can be fast heated in microwave field, so it can be used as additive for coal pyrolysis. Carbocoal otained from different pyrolysis temperature have different heating rate, along with the increase of carbocoal pyrolysis temperature, carbocoal heating rate increases in microwave field. Using charcoal as microwave absorbent for coal rapid pyrolysis in microwave field is feasible.


Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119496
Author(s):  
Hanjian Li ◽  
Huanying Chi ◽  
Song Hu ◽  
Yankui Wang ◽  
Gongxiang Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document