Leaf gas exchange and radiation use efficiency of sunflower (Helianthus annuus L.) in response to different deficit irrigation strategies: From solar radiation to plant growth analysis

2015 ◽  
Vol 64 ◽  
pp. 88-97 ◽  
Author(s):  
Pasquale Garofalo ◽  
Michele Rinaldi
Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 101-110 ◽  
Author(s):  
S. Sridhara ◽  
T.G. Prasad

SUMMARYA field experiment was conducted at Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore to study the effect of irrigation regimens on the biomass accumulation, canopy development, light interception and radiation use efficiency of sunflower. The treatments includes irrigating the plants at 0.4, 0.6, 0.8 and 1.0 cumulative pan evaporation. The results indicated that the aboveground biomass, canopy development, radiation interception and radiation use efficiency were influenced favorably by the irrigation regimens. Irrespective of the irrigation regimen, the radiation use efficiency of sunflower increased from 15 DAS to 75 DAS and then tended to decline. The decrease in RUE after anthesis is coupled with decrease in leaf nitrogen content. In general the RUE of sunflower ranged from 0.49 g MJ-1 to 1.84 g MJ-1 at different growth stages. The light transmission within the canopy increased exponentially with plant height and the canopy extension coefficient is found to be 0.8.


2015 ◽  
Vol 10 (4) ◽  
pp. 185 ◽  
Author(s):  
Danilo Scordia ◽  
Giorgio Testa ◽  
Salvatore L. Cosentino ◽  
Venera Copani ◽  
Cristina Patanè

Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD) and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of <em>Saccharum</em> <em>spontaneum</em> L. ssp. <em>aegyptiacum</em> (Willd.) Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE)] and per unit water transpired [water use efficiency (WUE)] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I<sub>100</sub>, I<sub>50</sub> and I<sub>0</sub>, corresponding to 100%, 50% and 0% of ETm restutition) under a semi-arid Mediterranean environment. Leaf area index (LAI), stem height, biomass dry matter yield, CO<sub>2</sub> assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I<sub>100</sub> and the lowest in I<sub>0</sub>. RUE was the highest in I<sub>100</sub> followed by I<sub>50</sub> and I<sub>0</sub>; on the other hand, WUE was higher in I<sub>0</sub> than I<sub>50</sub> and I<sub>100</sub>. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the <em>Saccharum</em> stand, irrespective of the irrigation treatment. <em>Saccharum</em> <em>spontaneum</em> spp. <em>aegyptiacum</em> is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.


2015 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Mourad Rezig ◽  
Hatem Cheikh M'hamed ◽  
Mbarek Ben Naceur

<p class="4Body">Total Dray Matter (TDM), Photosynthetically Active Radiation Intercepted (PARabs), Water Consumption (WC), Water use- (WUE), Radiation use efficiency (RUE) and the Relation between Radiation Interception and Water Consumption for Durum Wheat were investigate under different irrigation amount (D<sub>1</sub>= 100 % ETc; D<sub>2</sub>= 70 % ETc; D<sub>3</sub>= 40 % ETc and D<sub>4</sub>= pluvial) and during three growing seasons (2005-2006, 2006-2007 and 2007-2008). Results showed that, the cumulative PARabs decreased with deficit irrigation. In fact, D<sub>1</sub> treatment recorded the highest cumulative PAR abs and the lowest marked under D<sub>4</sub> treatment. Similarly, TDM and RUE were decreased with deficit irrigation. The highest RUE observed under the D<sub>1</sub> (from 1.32 to 1.43 g MJ<sup>-1</sup>) and the lowest under D<sub>4</sub> (from 1.17 to 1.29 g MJ<sup>-1</sup>). However WUE increased with deficit irrigation. The highest WUE were obtained under the D<sub>4</sub> (from 3 to 4 kg m<sup>-3</sup>) and the lowest were observed under D<sub>1</sub> (from 2.8 to 3.1 kg m<sup>-3</sup>). Significant linear relationship was found between cumulative PAR abs and cumulative water consumption with a high correlation coefficient (R<sup>2</sup>) only under the two treatments D<sub>1</sub> and D<sub>2</sub>.</p>


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1416-1422 ◽  
Author(s):  
Giverson Mupambi ◽  
Stefano Musacchi ◽  
Sara Serra ◽  
Lee A. Kalcsits ◽  
Desmond R. Layne ◽  
...  

Globally, apple production often occurs in semiarid climates characterized by high summer temperatures and solar radiation. Heat stress events occur regularly during the growing season in these regions. For example, in the semiarid eastern half of Washington State, historic weather data show that, on average, 33% of the days during the growing season exceed 30 °C. To mediate some of the effects of heat stress, protective netting (PN) can be used to reduce the occurrence of fruit sunburn. However, the impacts of reduced solar radiation in a high light environment on light-use efficiency and photosynthesis are poorly understood. We sought to understand the ecophysiological response of apple (Malus domestica Borkh. cv. Honeycrisp) under blue photoselective PN during days with low (26.6 °C), moderate (33.7 °C), or high (38.1 °C) ambient temperatures. Two treatments were evaluated; an uncovered control and blue photoselective PN. Maximum photochemical efficiency of PSII, or photosystem II (Fv/Fm) was significantly greater at all measurement times under blue photoselective PN compared with the control on days with high ambient temperatures. Fv/Fm dropped below 0.79, which is considered the threshold for stress, at 1000 hr in the control and at 1200 hr under blue photoselective PN on a day with high ambient temperature. On days with low or moderate ambient temperatures, Fv/Fm was significantly greater under blue photoselective PN at 1400 hr, which coincided with the peak in solar radiation. ‘Honeycrisp’ apple exhibited dynamic photoinhibition as shown by the diurnal decline in Fv/Fm. Quantum photosynthetic yield of PSII (ΦPSII) was also generally greater under blue photoselective PN compared with the control for days with moderate or high ambient temperatures. Photochemical reflectance index (ΔPRI), the difference in reflectance between a stress-responsive and nonstress-responsive wavelength, was greater under PN compared with the control on the day with high ambient temperatures, with no differences observed under low or moderate ambient temperatures. Leaf gas exchange did not show noticeable improvement under blue photoselective netting when compared with the control despite the improvement in leaf-level photosynthetic light use efficiency. In conclusion, PN reduced incoming solar radiation, improved leaf-level photosynthetic light use efficiency, and reduced the symptoms of photoinhibition in a high-light, arid environment.


2002 ◽  
Vol 53 (6) ◽  
pp. 643 ◽  
Author(s):  
M. J. Robertson ◽  
J. F. Holland ◽  
S. Cawley ◽  
T. D. Potter ◽  
W. Burton ◽  
...  

Canola tolerant to the triazine group of herbicides is grown widely in Australian broad-acre cropping systems. Triazine-tolerant (TT) cultivars are known to have a yield and oil content penalty compared with non-TT cultivars. This study was designed to elucidate the crop physiological basis for the yield differences between the two types. Two commercial cultivars, near-isogenic for the TT trait, were compared in a detailed growth analysis in the field, and 22 crops were compared for phenology and crop attributes at maturity. In the growth analysis study, the TT trait was found to lower radiation use efficiency, which carried through to less biomass at maturity. There were minimal effects on leaf area development and harvest index, and no effect on canopy radiation extinction. Across the 22 crops, where yield varied from 240 to 3400 kg/ha in the non-TT cultivar, yield was on average 26% less in the TT cultivar due to less biomass produced, as there was no significant effect on harvest index. The difference in oil content (2-5%) was greater in low oil content environments. Flowering was delayed by 2-10 days with a greater delay being in later flowering environments. Quantification of the physiological attributes of TT canola allows the assessment of the productivity of different cultivar types across environments.


Author(s):  
E. Leo Daniel Amalraj ◽  
Devasantosh Mohanty ◽  
G. Praveen Kumar ◽  
Suseelendra Desai ◽  
SK. Mir Hassan Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document