Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use

2017 ◽  
Vol 86 ◽  
pp. 12-23 ◽  
Author(s):  
Frederik van der Bom ◽  
Jakob Magid ◽  
Lars Stoumann Jensen
2007 ◽  
Vol 35 (2) ◽  
pp. 769-772 ◽  
Author(s):  
Attila Megyes ◽  
Tamás Rátonyi ◽  
Dénes Sulyok
Keyword(s):  

2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


2017 ◽  
Vol 8 (2) ◽  
pp. 328-332
Author(s):  
J. Zhang ◽  
Y. Miao ◽  
W.D. Batchelor

Over-application of nitrogen (N) in rice (Oryza sativaL.) production in China is common, leading to low N use efficiency (NUE) and high environmental risks. The objective of this work was to evaluate the ability of the CERES-Rice crop growth model to simulate N response in the cool climate of Northeast China, with the long term goal of using the model to develop optimum N management recommendations. Nitrogen experiments were conducted from 2011–2015 in Jiansanjiang, Heilongjiang Province in Northeast China. The CERES-Rice model was calibrated for 2014 and 2015 and evaluated for 2011 and 2013 experiments. Overall, the model gave good estimations of yield across N rates for the calibration years (R2=0.89) and evaluation years (R2=0.73). The calibrated model was then run using weather data from 2001–2015 for 20 different N rates to determine the N rate that maximized the long term marginal net return (MNR) for different N prices. The model results indicated that the optimum mean N rate was 120–130 kg N ha–1, but that the simulated optimum N rate varied each year, ranging from 100 to 200 kg N ha–1. Results of this study indicated that the CERES-Rice model was able to simulate cool season rice growth and provide estimates of optimum regional N rates that were consistent with field observations for the area.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3368
Author(s):  
Dafina Petrova ◽  
Andrés Catena ◽  
Miguel Rodríguez-Barranco ◽  
Daniel Redondo-Sánchez ◽  
Eloísa Bayo-Lozano ◽  
...  

Many adult cancer patients present one or more physical comorbidities. Besides interfering with treatment and prognosis, physical comorbidities could also increase the already heightened psychological risk of cancer patients. To test this possibility, we investigated the relationship between physical comorbidities with depression symptoms in a sample of 2073 adult cancer survivors drawn from the nationally representative National Health and Nutrition Examination Survey (NHANES) (2007–2018) in the U.S. Based on information regarding 16 chronic conditions, the number of comorbidities diagnosed before and after the cancer diagnosis was calculated. The number of comorbidities present at the moment of cancer diagnosis was significantly related to depression risk in recent but not in long-term survivors. Recent survivors who suffered multimorbidity had 3.48 (95% CI 1.26–9.55) times the odds of reporting significant depressive symptoms up to 5 years after the cancer diagnosis. The effect of comorbidities was strongest among survivors of breast cancer. The comorbidities with strongest influence on depression risk were stroke, kidney disease, hypertension, obesity, asthma, and arthritis. Information about comorbidities is usually readily available and could be useful in streamlining depression screening or targeting prevention efforts in cancer patients and survivors. A multidimensional model of the interaction between cancer and other physical comorbidities on mental health is proposed.


Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


Author(s):  
Zekai Şen

In general, the techniques to predict drought include statistical regression, time series, stochastic (or probabilistic), and, lately, pattern recognition techniques. All of these techniques require that a quantitative variable be identified to define drought, with which to begin the process of prediction. In the case of agricultural drought, such a variable can be the yield (production per unit area) of the major crop in a region (Kumar, 1998; Boken, 2000). The crop yield in a year can be compared with its long-term average, and drought intensity can be classified as nil, mild, moderate, severe, or disastrous, based on the difference between the current yield and the average yield. Regression techniques estimate crop yields using yield-affecting variables. A comprehensive list of possible variables that affect yield is provided in chapter 1. Usually, the weather variables routinely available for a historical period that significantly affect the yield are included in a regression analysis. Regression techniques using weather data during a growing season produce short-term estimates (e.g., Sakamoto, 1978; Idso et al., 1979; Slabbers and Dunin, 1981; Diaz et al., 1983; Cordery and Graham, 1989; Walker, 1989; Toure et al., 1995; Kumar, 1998). Various researchers in different parts of the world (see other chapters) have developed drought indices that can also be included along with the weather variables to estimate crop yield. For example, Boken and Shaykewich (2002) modifed the Western Canada Wheat Yield Model (Walker, 1989) drought index using daily temperature and precipitation data and advanced very high resolution radiometer (AVHRR) satellite data. The modified model improved the predictive power of the wheat yield model significantly. Some satellite data-based variables that can be used to predict crop yield are described in chapters 5, 6, 9, 13, 19, and 28. The short-term estimates are available just before or around harvest time. But many times long-term estimates are required to predict drought for next year, so that long-term planning for dealing with the effects of drought can be initiated in time.


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


Sign in / Sign up

Export Citation Format

Share Document