Evaluation of the CERES-Rice Model for Precision Nitrogen Management for Rice in Northeast China

2017 ◽  
Vol 8 (2) ◽  
pp. 328-332
Author(s):  
J. Zhang ◽  
Y. Miao ◽  
W.D. Batchelor

Over-application of nitrogen (N) in rice (Oryza sativaL.) production in China is common, leading to low N use efficiency (NUE) and high environmental risks. The objective of this work was to evaluate the ability of the CERES-Rice crop growth model to simulate N response in the cool climate of Northeast China, with the long term goal of using the model to develop optimum N management recommendations. Nitrogen experiments were conducted from 2011–2015 in Jiansanjiang, Heilongjiang Province in Northeast China. The CERES-Rice model was calibrated for 2014 and 2015 and evaluated for 2011 and 2013 experiments. Overall, the model gave good estimations of yield across N rates for the calibration years (R2=0.89) and evaluation years (R2=0.73). The calibrated model was then run using weather data from 2001–2015 for 20 different N rates to determine the N rate that maximized the long term marginal net return (MNR) for different N prices. The model results indicated that the optimum mean N rate was 120–130 kg N ha–1, but that the simulated optimum N rate varied each year, ranging from 100 to 200 kg N ha–1. Results of this study indicated that the CERES-Rice model was able to simulate cool season rice growth and provide estimates of optimum regional N rates that were consistent with field observations for the area.

2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1078
Author(s):  
Yin Wang ◽  
Yaqi Cao ◽  
Guozhong Feng ◽  
Xiaoyu Li ◽  
Lin Zhu ◽  
...  

To increase crop productivity while reducing environmental costs, an integrated soil–crop system management (ISSM) strategy was developed and successfully adopted in China. However, little information is available on the long-term ISSM effects on maize agronomic and environmental performance. Therefore, we evaluated the effects of ISSM with combining inorganic and organic fertilizers on maize productivity, N use efficiency (NUE) and N balance and losses as compared with farmers’ practice (FP) and high-yielding practice (HY), based on an 11-year field experiment in Northeast China. Maize yield in ISSM (11.7–14.3 Mg ha−1) achieved 97.7% of that in HY and was increased by 27% relative to FP. The excellent yield performance in ISSM was mainly attributed to optimum plant population structure and yield components. Annual N surplus in ISSM was only 7 kg ha−1, which was considerably lower than that in FP (52 kg ha−1) and HY (109 kg ha−1). Consequently, ISSM obtained significantly lower N losses and greenhouse gases emissions and higher NUE. In contrast to FP, crop performance in ISSM showing better sustainability and inter-annual stability. In conclusion, ISSM is an effective strategy to achieve long-term sustainable high crop yields and NUE with less environmental costs in the intensive agricultural system.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 263 ◽  
Author(s):  
Jing Zhang ◽  
Yuxin Miao ◽  
William Batchelor ◽  
Junjun Lu ◽  
Hongye Wang ◽  
...  

Efficient use of nitrogen (N) fertilizer is critically important for China’s food security and sustainable development. Crop models have been widely used to analyze yield variability, assist in N prescriptions, and determine optimum N rates. The objectives of this study were to use the CERES-Rice model to simulate the N response of different high-latitude, adapted flooded rice varieties to different types of weather seasons, and to explore different optimum rice N management strategies with the combinations of rice varieties and types of weather seasons. Field experiments conducted for five N rates and three varieties in Northeast China during 2011–2016 were used to calibrate and evaluate the CERES-Rice model. Historical weather data (1960–2014) were classified into three weather types (cool/normal/warm) based on cumulative growing degree days during the normal growing season for rice. After calibrating the CERES-Rice model for three varieties and five N rates, the model gave good simulations for evaluation seasons for top weight (R2 ≥ 0.96), leaf area index (R2 ≥ 0.64), yield (R2 ≥ 0.71), and plant N uptake (R2 ≥ 0.83). The simulated optimum N rates for the combinations of varieties and weather types ranged from 91 to 119 kg N ha−1 over 55 seasons of weather data and were in agreement with the reported values of the region. Five different N management strategies were evaluated based on farmer practice, regional optimum N rates, and optimum N rates simulated for different combinations of varieties and weather season types over 20 seasons of weather data. The simulated optimum N rate, marginal net return, and N partial factor productivity were sensitive to both variety and type of weather year. Based on the simulations, climate warming would favor the selection of the 12-leaf variety, Longjing 21, which would produce higher yield and marginal returns than the 11-leaf varieties under all the management strategies evaluated. The 12-leaf variety with a longer growing season and higher yield potential would require higher N rates than the 11-leaf varieties. In summary, under warm weather conditions, all the rice varieties would produce higher yield, and thus require higher rates of N fertilizers. Based on simulation results using the past 20 years of weather data, variety-specific N management was a practical strategy to improve N management and N partial factor productivity compared with farmer practice and regional optimum N management in the study region. The CERES-Rice crop growth model can be a useful tool to help farmers select suitable precision N management strategies to improve N-use efficiency and economic returns.


2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


2016 ◽  
Vol 67 (11) ◽  
pp. 1158 ◽  
Author(s):  
Rupinder Kaur ◽  
Seema Bedi ◽  
Gulshan Mahajan ◽  
Gurpreet Kaur ◽  
Bhagirath Singh Chauhan

To achieve high productivity of labour and water in rice cropping, farmers in South Asia have recently shown more interest in dry direct-seeded rice (DSR). An understanding of physiological and biochemical traits associated with high grain yield and efficiency of nitrogen (N) use is important to the development of genotypes for DSR. We investigated this issue with rice genotypes adapted to DSR in response to N rates. A 2-year study was conducted in a factorial randomised complete block design with eight genotypes and two N rates (75 and 150 kg N ha–1). Almost all of the physiological and biochemical traits studied (e.g. plant height, chlorophyll content, panicle weight, soluble sugars, starch) in DSR improved with increasing N from 75 to 150 kg ha–1, resulting in a 6% increase in yield at 150 kg N ha–1 relative to 75 kg N ha–1. Partial factor productivity of N was highest for the genotype IET-23455 (72.4 kg kg–1) and lowest for the genotype AAUDR (37.4 kg kg–1). Our results suggest that genotypes such as IET-23455 can maintain grain yield at low N rates as N-efficient genotypes. The greater biochemical activity (nitrate reductase and glutamine synthetase, sugar, protein and proline) and higher photosynthetic N-use efficiency at low N rates could be used in selection for N-efficient rice genotypes for DSR.


2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


HortScience ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Desire Djidonou ◽  
Xin Zhao ◽  
Eric H. Simonne ◽  
Karen E. Koch ◽  
John E. Erickson

In addition to managing soilborne diseases, grafting with vigorous rootstocks has been shown to improve yield in tomato (Solanum lycopersicum L.) production. However, the influence of different levels of nitrogen (N) and irrigation supplies on grafted tomato plants has not been fully examined in comparison with non-grafted plants, especially under field conditions. The objective of this two-year study was to determine the effects of different irrigation regimes and N rates on yield, irrigation water use efficiency (iWUE), and N use efficiency (NUE) of grafted tomato plants grown with drip irrigation in sandy soils of north Florida. The determinate tomato cultivar Florida 47 was grafted onto two interspecific hybrid rootstocks, ‘Beaufort’ and ‘Multifort’ (S. lycopersicum × S. habrochaites S. Knapp & D.M. Spooner). Non-grafted ‘Florida 47’ was used as a control. Plants were grown in a fumigated field under 12 combinations of two drip irrigation regimes (50% and 100% of commonly used irrigation regime) and six N rates (56, 112, 168, 224, 280, and 336 kg·ha−1). The field experiments were arranged in a split-plot design with four replications. The whole plots consisted of the irrigation regime and N rate combination treatments, whereas the subplots represented the two grafting treatments and the non-grafted plants. Self-grafted ‘Florida 47’ was also included in the 100% irrigation and 224 kg N/ha fertilization treatment as a control. In 2010, the 50% irrigation regime resulted in higher total and marketable yields than the 100% irrigation regime. Tomato yield was significantly influenced by N rates, but similar yields were achieved at 168 kg·ha−1 and above. Plants grafted onto ‘Beaufort’ and ‘Multifort’ showed an average increase of 27% and 30% in total and marketable fruit yields, respectively, relative to non-grafted plants. In 2011, fruit yields were affected by a significant irrigation by N rate interaction. Grafting significantly increased tomato yields, whereas grafted plants showed greater potential for yield improvement with increasing N rates compared with non-grafted plants. Self-grafting did not affect tomato yields. More fruit per plant and higher average fruit weight as a result of grafting were observed in both years. Grafting with the two rootstocks significantly improved the irrigation water and N use efficiency in tomato production. Results from this study suggested the need for developing irrigation and N fertilization recommendations for grafted tomato production in sandy soils.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Hua ◽  
Peiyu Luo ◽  
Ning An ◽  
Fangfang Cai ◽  
Shiyu Zhang ◽  
...  

Abstract It is great of importance to better understand the effects of the long-term fertilization on crop yields, soil properties and nitrogen (N) use efficiency in a rotation cropping cultivation system under the conditions of frequent soil disturbance. Therefore, a long-term field experiment of 40 years under soybean-maize rotation was performed in a brown soil to investigate the effects of inorganic and organic fertilizers on crop yields, soil properties and nitrogen use efficiency. Equal amounts of 15N-labelled urea with 20.8% of atom were used and uniformly applied into the micro-plots of the treatments with N, NPK, M1NPK, M2NPK before soybean sowing, respectively. Analyses showed that a total of 18.3–32.5% of applied N fertilizer was taken up by crops in the first soybean growing season, and that the application of manure combining with chemical fertilizer M2NPK demonstrated the highest rate of 15N recovery and increased soil organic matter (SOM) and Olsen phosphorus (Olsen P), thereby sustaining a higher crop yield and alleviating soil acidification. Data also showed that no significant difference was observed in the 15N recovery from residue N in the second maize season plant despite of showing a lower 15N recovery compared with the first soybean season. The recovery rates of 15N in soils were ranged from 38.2 to 49.7% by the end of the second cropping season, and the residuals of 15N distribution in soil layers revealed significant differences. The M2NPK treatment demonstrated the highest residual amounts of 15N, and a total of 50% residual 15N were distributed in a soil layer of 0–20 cm. Our results showed that long-term application of organic fertilizers could effectively promote N use efficiency by increasing SOM and improving soil fertility, and thus leading to an increase in crop yields. This study will provide a scientific reference and guidance for improving soil sustainable productivity by manure application.


2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 125-135
Author(s):  
D Panda ◽  
AK Nayak ◽  
S Mohanty

Nitrogen is the one of most limiting nutrient for rice production, and in India rice cultivation alone accounts approximately 37% of the total fertilizer-N consumption in the year 1917-18. However, 60-70% of applied N is lost from the rice ecosystem system in the form of reactive N species such as ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2) and nitrate (NO3) through various processes. Hence enhancing N use efficiency through improved N management is of greater importance for ensuring food security and environmental sustainability. The decisions on optimum level, time, form and method of N application are crucial to an efficient N management strategy. Earlier studies suggested blanket fertilizer recommendations for different rice ecosystems and soil test based fertilizer applications. Subsequently, innovative methods of N application including deep placement of urea super granule in reduced zone, subsurface incorporation of urea through farmer friendly methods were also recommended Recently several advancements have been made in N management practices for rice crop such as site specific N management, real time N management using leaf colour chart (LCC) and customised LCC, enhanced efficiency N fertilizers (EENF) using N transformation regulators and GIS and remote sensing (RS) - based N application technologies. The objective of this paper is to comprehensively discuss about the established and emerging N management options for improving yield, N use efficiency and environmental sustainability of rice.


Sign in / Sign up

Export Citation Format

Share Document