Using linear mixed-effects modeling to evaluate the impact of edaphic factors on spatial variation in winter wheat grain yield in Japanese consolidated paddy fields

2022 ◽  
Vol 133 ◽  
pp. 126447
Author(s):  
Xinbin Zhou ◽  
Gerard B.M. Heuvelink ◽  
Yusuke Kono ◽  
Tsutomu Matsui ◽  
Takashi S.T. Tanaka
2021 ◽  
pp. 1-4
Author(s):  
Michaela Kranepuhl ◽  
Detlef May ◽  
Edna Hillmann ◽  
Lorenz Gygax

Abstract This research communication describes the relationship between the occurrence of lameness and body condition score (BCS) in a sample of 288 cows from a single farm that were repeatedly scored in the course of 9 months while controlling for confounding variables. The relationship between BCS and lameness was evaluated using generalised linear mixed-effects models. It was found that the proportion of lame cows was higher with decreasing but also with increasing BCS, increased with lactation number and decreased with time since the last claw trimming. This is likely to reflect the importance of sufficient body condition in the prevention of lameness but also raises the question of the impact of overcondition on lameness and the influence of claw trimming events on the assessment of lameness. A stronger focus on BCS might allow improved management of lameness that is still one of the major problems in housed cows.


2018 ◽  
Vol 176 ◽  
pp. 10-17 ◽  
Author(s):  
Lifang Wang ◽  
Jutao Sun ◽  
Zhengbin Zhang ◽  
Ping Xu ◽  
Zhouping Shangguan

2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

<p>The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha<sup>-1</sup>). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO<sub>2</sub> emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH<sub>4,</sub> but CH<sub>4</sub> fluxes were not affected by the different treatments. N<sub>2</sub>O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO<sub>2-eq</sub> ha<sup>-1</sup>. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO<sub>2</sub>-<sub>eq</sub> ha<sup>-1</sup>), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.</p>


2020 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Tsotne Samadashvili ◽  
Gulnari Chkhutiashvili ◽  
Mirian Chokheli ◽  
Zoia Sikharulidze ◽  
Qetevan Nacarishvili

Wheat is a vital crop in Georgia and in the world. Because of the increase in the rate of population growth, improving the grain yield is the way to meet food demand. Proper crop nutrition plays a vital role in maintaining the world’s food supply. Fertilizer is essential for accomplishing this.One of the most important means for increasing the wheat yield is fertilizer, especially, organic fertilizer. The present research was carried out to study the effects of different doses (150ml, 200ml and 300 ml on ha) of humic organic fertilizer “Ecorost” on yield of winter wheat cultivar “Tbilisuri 15”. The humic liquid fertilizer "Ecorost" is a peat-based organic-mineral fertilizer. The product is active and saturated due to the use of the latest technology and living bacteria found in peat. The field trials were conducted in 2017-2019 at the Experimental Site of Scientific Research Center of Agriculture in Dedopliskharo- arid region (Eastern Georgia).Liquid fertilizer was applied two times: in tillering stage in early spring and two weeks after - in stem elongation stage. Results indicated that the highest wheat grain yield (4t/ha) was achieved when the plants were fertilized with 300 ml on 1 ha ofEcorost. Applications of liquid fertilizer “Ecorost” increased grain yield of winter wheat by 16.2% in comparison with standard nitrogen fertilization. Thus, liquid fertilizer “Ecorost” had a significant effect on wheat grain yield compared to control standard nitrogen fertilizer.


2019 ◽  
Vol 35 (1) ◽  
pp. 63-70
Author(s):  
Emmanuel Byamukama ◽  
Shaukat Ali ◽  
Jonathan Kleinjan ◽  
Dalitso N. Yabwalo ◽  
Christopher Graham ◽  
...  

2020 ◽  
Vol 112 (1) ◽  
pp. 564-577 ◽  
Author(s):  
Jagmandeep Dhillon ◽  
Elizabeth Eickhoff ◽  
Lawrence Aula ◽  
Peter Omara ◽  
Gwen Weymeyer ◽  
...  

2017 ◽  
Vol 21 (2) ◽  
pp. 33-47 ◽  
Author(s):  
Jerzy Bieniek ◽  
Marek Mielnicki ◽  
Leszek Romański ◽  
Piotr Komarnicki

AbstractThe paper presents analysis of the impact of irrigation dose on the winter wheat Bystra yield, which is recommended for cultivation in Poland. It is a low-growing high-yield wheat cultivar. A reel sprinkler equipped with a computer for control of parameters of its operation, which was supplied with pond water was used for irrigation. Test were carried out on five fields, where four irrigation doses were used: 15, 20, 25, 30 mm. A change of weather during research in May and June caused the need to irrigate a field four times. During research, the size of the irrigation dose was measured with rain gauges on each of the investigated fields in five measurement points. One of the fields was a control field, which was not irrigated. The investigated wheat was characterized during harvesting. Research proved that the size of the irrigation dose influences the wheat yield. The grain yield between a control field and a field with the highest irrigation dose increased by twofold. Moreover, analysis of costs incurred during sprinkling were analysed.


1997 ◽  
Vol 11 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Phillip W. Stahlman ◽  
Randall S. Currie ◽  
Mosad A. El-Hamid

A three-year field study in west-central Kansas investigated the effects of combinations of spray carrier, nonionic surfactant (NIS), triasulfuron, and/or 2,4-D on winter wheat foliar injury and grain yield. Herbicides applied in water without NIS caused little or no foliar injury in two of three years. Urea-ammonium nitrate (UAN) at 112 L/ha (40 kg N/ha) alone or as a carrier for herbicides caused moderate to severe foliar injury in all three years. Adding NIS to UAN spray solutions increased foliar injury, especially with the tank mixture of triasulfuron + 2,4-D. Effects of triasulfuron + NIS or 2,4-D applied in UAN were additive. Foliar injury was related inversely to temperature following application. Foliar injury was most evident 4 to 7 d after application and disappeared within 2 to 3 wk. Diluting UAN 50% with water lessened foliar injury in two of three years, especially in the presence of NIS, regardless of whether herbicides were in the spray solution. Treatments did not reduce wheat grain yield in any year despite estimates of up to 53% foliar injury one year.


Sign in / Sign up

Export Citation Format

Share Document