Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis

2012 ◽  
Vol 48 (5) ◽  
pp. 753-762 ◽  
Author(s):  
Nirmitha I. Herath ◽  
Mark D. Spanevello ◽  
James D. Doecke ◽  
Fiona M. Smith ◽  
Celio Pouponnot ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2128-2128 ◽  
Author(s):  
Shao-qing Kuang ◽  
Zhi-Hong Fang ◽  
Gonzalo Lopez ◽  
Weigang Tong ◽  
Hui Yang ◽  
...  

Abstract The Eph (erythroprotein-producing hepatoma amplified sequence) family receptor tyrosine kinases and their ephrin ligands (ephrins) are involved in a variety of functions in normal cell development and cancer. We have identified several members of this family as potential targets of aberrant DNA methylation using Methylated CpG Island Amplification (MCA) / DNA promoter microarray technology. This is of importance as there are no prior reports of potential Eph receptor or Ephrin epigenetic inactivation in human leukemia. To further investigate the role of Eph receptor and ephrin family genes in leukemia, we have analyzed their DNA methylation status in a panel of 23 leukemia cell lines and 65 primary ALL patient samples. Aberrant DNA methylation of 9 of these genes (EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3) was detected in multiple leukemia cell lines but not in normal samples by bisulfite pyrosequencing. In ALL patient samples, the frequencies of DNA methylation detected in the promoter regions of these genes ranged from 23% to 87% for EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3. Expression analysis of 3 of these genes (EPHA5, EPHB4 and Ephrin B2) in leukemia cell lines by real-time PCR further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with DNA methyltransferase inhibitor 5′-aza-2′-deoxycytidine resulted in gene re-expression. Forced overexpression of EPHB4 using a lentivirus transduction system in Raji cell lines resulted in decreased cell proliferation and adhesion-independent cell growth, as well as in an increase in staurosporine induction of apoptosis. In addition, EPHB4 overexpression resulted in a significant downregulation of phosphorylated Akt pathway but had no effect on mitogen-activated protein kinase pathway. In summary, we describe for the first time the epigenetic suppression of Ephrin receptors and their ligands in human leukemia, indicating that these genes may be potential tumor suppressors in leukemia. Targeting of these pathways may result in the development of new potential therapies and biomarkers for patients with ALL.


2017 ◽  
Vol 28 (24) ◽  
pp. 3532-3541 ◽  
Author(s):  
Fumihiko Okumura ◽  
Akiko Joo-Okumura ◽  
Keisuke Obara ◽  
Alexander Petersen ◽  
Akihiko Nishikimi ◽  
...  

Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.


Cell ◽  
1995 ◽  
Vol 82 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Uwe Drescher ◽  
Claus Kremoser ◽  
Claudia Handwerker ◽  
Jürgen Löschinger ◽  
Masaharu Noda ◽  
...  

2004 ◽  
Vol 379 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Eivind F. FINNE ◽  
Else MUNTHE ◽  
Hans-Christian AASHEIM

Ephrins are ligands for the Eph receptor tyrosine kinases, which play important roles in patterning nervous and vascular systems. Ephrin-A1 is a glycosylphosphatidylinositol-anchored ligand that binds to the EphA receptor tyrosine kinases. In the present study, we have identified a new ephrin-A1 isoform, denoted ephrin-A1b (ephrin-A1 isoform b). Compared with the originally described ephrin-A1 sequence, ephrin-A1a [Holzman, Marks and Dixit (1990) Mol. Cell. Biol. 10, 5830–5838], ephrin-A1b lacks a segment of 22 amino acids (residues 131–152). At the transcript level, exon 3 is spliced out in the transcript encoding ephrin-A1b. Transfection of HEK-293T cells (human embryonic kidney 293 cells) with an ephrin-A1b-expressing plasmid resulted in a significant expression of the protein on the cell surface. However, soluble EphA2 receptor (EphA2-Fc) bound weakly to ephrin-A1b-expressing transfectants, but bound strongly to ephrin-A1a-expressing transfectants. Ephrins have been shown to undergo regulated cleavage after interaction with their receptors. This process is inhibited by co-expression of ephrin-A1a and ephrin-A1b, indicating that ephrin-A1b influences the cleavage process. Taken together, these findings indicate that this newly described isoform may regulate the function of its ephrin-A1a counterpart.


2014 ◽  
Author(s):  
◽  
Danny A. Stark

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Skeletal muscle can be isolated into 642 individual muscles and makes up to one third to one half of the mass of the human body. Each of these muscles is specified and patterned prenatally and after birth they will increase in size and take on characteristics suited to each muscle's unique function. To make the muscles functional, each muscle cell must be innervated by a motor neuron, which will also affect the characteristics of the mature muscle. In a healthy adult, muscles will maintain their specialized pattern and function during physiological homeostasis, and will also recapitulate them if the integrity or health of the muscle is disrupted. This repair and regeneration is dependent satellite cells, the skeletal muscle stem cells. In this dissertation, we study a family of receptor tyrosine kinases, Ephs, and their juxtacrine ephrin ligands in the context of skeletal muscle specification and regeneration. First, using a classical ephrin 'stripe' assay to test for contact-mediated repulsion, we found that satellite cells respond to a subset of ephrins with repulsive motility in vitro and that these forward signals through Ephs also promote patterning of differentiating myotubes parallel to ephrin stripes. This pattering can be replicated in a heterologous in vivo system (the hindbrain of the developing quail, where neural crest cells migrate in streams to the branchial arches, and in the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite). Second, we present evidence that specific pairwise interactions between Eph receptor tyrosine kinases and ephrin ligands are required to ensure appropriate muscle innervation when it is originally set during postnatal development and when it is recapitulated after muscle or nerve trauma during adulthood. We show expression of a single ephrin, ephrin-A3, exclusively on type I (slow) myofibers shortly after birth, while its receptor EphA8 is only localized to fast motor endplates, suggesting a functional repulsive interaction for motor axon guidance and/or synaptogenesis. Adult EFNA3-/- mutant mice show a significant loss of slow myofibers, while misexpression of ephrin-A3 on fast myofibers results in a switch from a fast fiber type to slow in the context of sciatic nerve injury and regrowth. Third, we show that EphA7 is expressed on satellite cell derived myocytes in vitro, and marks both myocytes and regenerating myofibers in vivo. In the EPHA7 knockout mouse, we find a regeneration defect in a barium chloride injury model starting 3 days post injection in vivo, and that cultured mutant satellite cells are slow to differentiate and divide. Finally, we present other potential Ephs and ephrins that may affect skeletal muscle, such as EphB1 that is expressed on all MyHC-IIb fibers and a subset of MyHC-IIx fibers, and we show a multitude of Ephs and ephrins at the neuromuscular junction that appear to localize on specific myofibers and at different areas of the synapse. We propose that Eph/ephrin signaling, though well studied in development, continues to be important in regulating post natal development, regeneration, and homeostasis of skeletal muscle.


2020 ◽  
Vol 295 (29) ◽  
pp. 9917-9933 ◽  
Author(s):  
Michael D. Paul ◽  
Hana N. Grubb ◽  
Kalina Hristova

Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)–EPH receptor A2 (EPHA2), EGFR–vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2–VEGFR2, EPHA2–fibroblast growth factor receptor 1 (FGFR1), EPHA2–FGFR2, EPHA2–FGFR3, VEGFR2–FGFR1, VEGFR2–FGFR2, and VEGFR2–FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document