scholarly journals Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis

2018 ◽  
Vol 157 ◽  
pp. 887-897 ◽  
Author(s):  
Wei Huang ◽  
Yuan Liu ◽  
Jun Wang ◽  
Xia Yuan ◽  
Hong-Wei Jin ◽  
...  
2020 ◽  
Author(s):  
Ruijie Zhang ◽  
Xiaozhi Yang ◽  
Dana M. Roque ◽  
Chenglong Li ◽  
Jiayuh Lin

AbstractOvarian cancer is the fifth most common cause of cancer deaths among American women. Platinum and taxane combination chemotherapy represents the first-line approach for ovarian cancer, but treatment success is often limited by chemoresistance. Therefore, it is necessary to find new drugs to sensitize ovarian cancer cells to chemotherapy. Persistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling plays an important role in oncogenesis. Using a novel approach called advanced multiple ligand simultaneous docking (AMLSD), we developed a novel nonpeptide small molecule, LLL12B, which targets the STAT3 pathway. In this study, LLL12B inhibited STAT3 phosphorylation (tyrosine 705) and the expression of its downstream targets, which are associated with cancer cell proliferation and survival. We showed that LLL12B also inhibits cell viability, migration, and proliferation in human ovarian cancer cells. LLL12B combined with either paclitaxel or with cisplatin demonstrated synergistic inhibitory effects relative to monotherapy in inhibiting cell viability and LLL12B-paclitaxel or LLL12B-cisplatin combination exhibited greater inhibitory effects than cisplatin- paclitaxel combination in ovarian cancer cells. Furthermore, LLL12B-paclitaxel or LLL12B-cisplatin combination showed more significant in inhibiting cell migration and growth than monotherapy in ovarian cancer cells. In summary, our results support the novel small molecule LLL12B as a potent STAT3 inhibitor in human ovarian cancer cellsand suggest that LLL12B in combination with the current front-line chemotherapeutic drugs cisplatin and paclitaxel may represent a promising approach for ovarian cancer therapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0240145
Author(s):  
Ruijie Zhang ◽  
Xiaozhi Yang ◽  
Dana M. Roque ◽  
Chenglong Li ◽  
Jiayuh Lin

Ovarian cancer is the fifth most common cause of cancer deaths among American women. Platinum and taxane combination chemotherapy represents the first-line approach for ovarian cancer, but treatment success is often limited by chemoresistance. Therefore, it is necessary to find new drugs to sensitize ovarian cancer cells to chemotherapy. Persistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling plays an important role in oncogenesis. Using a novel approach called advanced multiple ligand simultaneous docking (AMLSD), we developed a novel nonpeptide small molecule, LLL12B, which targets the STAT3 pathway. In this study, LLL12B inhibited STAT3 phosphorylation (tyrosine 705) and the expression of its downstream targets, which are associated with cancer cell proliferation and survival. We showed that LLL12B also inhibits cell viability, migration, and proliferation in human ovarian cancer cells. LLL12B combined with either paclitaxel or with cisplatin demonstrated synergistic inhibitory effects relative to monotherapy in inhibiting cell viability and LLL12B-paclitaxel or LLL12B-cisplatin combination exhibited greater inhibitory effects than cisplatin-paclitaxel combination in ovarian cancer cells. Furthermore, LLL12B-paclitaxel or LLL12B-cisplatin combination showed more significant in inhibiting cell migration and growth than monotherapy in ovarian cancer cells. In summary, our results support the novel small molecule LLL12B as a potent STAT3 inhibitor in human ovarian cancer cells and suggest that LLL12B in combination with the current front-line chemotherapeutic drugs cisplatin and paclitaxel may represent a promising approach for ovarian cancer therapy.


2015 ◽  
Vol 12 (8) ◽  
pp. 628-639
Author(s):  
Yearam Jung ◽  
Soon Young Shin ◽  
Yeonjoong Yong ◽  
Hyuk Yoon ◽  
Seunghyun Ahn ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Zhixiong Xie ◽  
Tianyu Zhang ◽  
Cheng Zhong

Background: During chemotherapy, drugs can damage cancer cells’ DNA and cytomembrane structure, and then induce cell death. However, autophagy can increase the chemotherapy resistance of cancer cells, reducing the effect of chemotherapy. Objective: To block the autophagic flux in cancer cells, it is vital to enhance the anti-cancer efficacy of chemotherapy drugs; for this purpose, we test the gadolinium oxide nanoparticles (Gd2O3 NPs)’ effect on autophagy. Methods: The cytotoxicity of Gd2O3 NPs on HeLa cells was evaluated by a (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then, monodasylcadaverine staining, immunofluorescence, immunoblot and apoptosis assay were conducted to evaluate the effect of Gd2O3 NPs on autophagy and efficacy of chemotherapy drugs in human ovarian cancer cells. Results: We found that Gd2O3 NPs, which have great potential for use as a contrast agent in magnetic resonance imaging, could block the late stage of autophagic flux in a dose-dependent manner and then cause autophagosome accumulation in HeLa cells. When co-treated with 8 μg/mL Gd2O3 NPs and 5 μg/mL cisplatin, the number of dead HeLa cells increased by about 20% compared with cisplatin alone. We observed the same phenomenon in cisplatin-resistant COC1/DDP cells. Conclusion: We conclude that Gd2O3 NPs can block the late stage of autophagic flux and enhance the cytotoxicity of chemotherapeutic drugs in human ovarian cancer cells. Thus, the nanoparticles have significant potential for use in both diagnosis and therapy of solid tumor.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2745
Author(s):  
Miran Jeong ◽  
Yi-Yue Wang ◽  
Ju-Yeon Choi ◽  
Myong-Cheol Lim ◽  
Jung-Hye Choi

In the tumor microenvironment, macrophages have been suggested to be stimulated by tumor cells, becoming tumor-associated macrophages that promote cancer development and progression. We examined the effect of these macrophages on human ovarian cancer cell invasion and found that conditioned medium of macrophages stimulated by ovarian cancer cells (OC-MQs) significantly increased cell invasion. CC chemokine ligand 7 (CCL7) expression and production were significantly higher in OC-MQs than in the control macrophages. Peritoneal macrophages from patients with ovarian cancer showed higher CCL7 expression levels than those from healthy controls. Inhibition of CCL7 using siRNA and neutralizing antibodies reduced the OC-MQ-CM-induced ovarian cancer cell invasion. CC chemokine receptor 3 (CCR3) was highly expressed in human ovarian cancer cells, and a specific inhibitor of this receptor reduced the OC-MQ-CM-induced invasion. Specific signaling and transcription factors were associated with enhanced CCL7 expression in OC-MQs. CCL7-induced invasion required the expression of matrix metalloproteinase 9 via activation of extracellular signal-related kinase signaling in human ovarian cancer cells. These data suggest that tumor-associated macrophages can affect human ovarian cancer metastasis via the CCL7/CCR3 axis.


Sign in / Sign up

Export Citation Format

Share Document