De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder

2019 ◽  
Vol 62 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Wei Shen ◽  
Patti Krautscheid ◽  
Audrey M. Rutz ◽  
Pinar Bayrak-Toydemir ◽  
Sarah L. Dugan
2021 ◽  
Author(s):  
Xueya Zhou ◽  
Pamela Feliciano ◽  
Tianyun Wang ◽  
Irina Astrovskaya ◽  
Chang Shu ◽  
...  

AbstractDespite the known heritable nature of autism spectrum disorder (ASD), studies have primarily identified risk genes with de novo variants (DNVs). To capture the full spectrum of ASD genetic risk, we performed a two-stage analysis of rare de novo and inherited coding variants in 42,607 ASD cases, including 35,130 new cases recruited online by SPARK. In the first stage, we analyzed 19,843 cases with one or both biological parents and found that known ASD or neurodevelopmental disorder (NDD) risk genes explain nearly 70% of the genetic burden conferred by DNVs. In contrast, less than 20% of genetic risk conferred by rare inherited loss-of-function (LoF) variants are explained by known ASD/NDD genes. We selected 404 genes based on the first stage of analysis and performed a meta-analysis with an additional 22,764 cases and 236,000 population controls. We identified 60 genes with exome-wide significance (p < 2.5e-6), including five new risk genes (NAV3, ITSN1, MARK2, SCAF1, and HNRNPUL2). The association of NAV3 with ASD risk is entirely driven by rare inherited LoFs variants, with an average relative risk of 4, consistent with moderate effect. ASD individuals with LoF variants in the four moderate risk genes (NAV3, ITSN1, SCAF1, and HNRNPUL2, n = 95) have less cognitive impairment compared to 129 ASD individuals with LoF variants in well-established, highly penetrant ASD risk genes (CHD8, SCN2A, ADNP, FOXP1, SHANK3) (59% vs. 88%, p= 1.9e-06). These findings will guide future gene discovery efforts and suggest that much larger numbers of ASD cases and controls are needed to identify additional genes that confer moderate risk of ASD through rare, inherited variants.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1355
Author(s):  
Matthias Schaks ◽  
Michael Reinke ◽  
Walter Witke ◽  
Klemens Rottner

Actin remodeling is frequently regulated by antagonistic activities driving protrusion and contraction downstream of Rac and Rho small GTPases, respectively. WAVE regulatory complex (WRC), which primarily operates downstream of Rac, plays pivotal roles in neuronal morphogenesis. Recently, two independent studies described de novo mutations in the CYFIP2 subunit of WRC, which caused intellectual disability (ID) in humans. Although mutations had been proposed to effect WRC activation, no experimental evidence for this was provided. Here, we made use of CRISPR/Cas9-engineered B16-F1 cell lines that were reconstituted with ID-causing CYFIP variants in different experimental contexts. Almost all CYFIP2-derived mutations (7 out of 8) promoted WRC activation, but to variable extent and with at least two independent mechanisms. The majority of mutations occurs in a conserved WAVE-binding region, required for WRC transinhibition. One mutation is positioned closely adjacent to the Rac-binding A site and appears to ease Rac-mediated WRC activation. As opposed to these gain-of-function mutations, a truncating mutant represented a loss-of-function variant and failed to interact with WRC components. Collectively, our data show that explored CYFIP2 mutations frequently, but not always, coincide with WRC activation and suggest that normal brain development requires a delicate and precisely tuned balance of neuronal WRC activity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadja T. Hofer ◽  
Petronel Tuluc ◽  
Nadine J. Ortner ◽  
Yuliia V. Nikonishyna ◽  
Monica L. Fernándes-Quintero ◽  
...  

Abstract Background There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13–17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3–4-fold. Conclusions and limitations Our data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Alessio Cortelazzo ◽  
Claudio De Felice ◽  
Roberto Guerranti ◽  
Cinzia Signorini ◽  
Silvia Leoncini ◽  
...  

Inflammation has been advocated as a possible common central mechanism for developmental cognitive impairment. Rett syndrome (RTT) is a devastating neurodevelopmental disorder, mainly caused byde novoloss-of-function mutations in the gene encoding MeCP2. Here, we investigated plasma acute phase response (APR) in stage II (i.e., “pseudo-autistic”) RTT patients by routine haematology/clinical chemistry and proteomic 2-DE/MALDI-TOF analyses as a function of four majorMECP2gene mutation types (R306C, T158M, R168X, and large deletions). Elevated erythrocyte sedimentation rate values (median 33.0 mm/h versus 8.0 mm/h,P<0.0001) were detectable in RTT, whereas C-reactive protein levels were unchanged (P=0.63). The 2-DE analysis identified significant changes for a total of 17 proteins, the majority of which were categorized as APR proteins, either positive (n=6spots) or negative (n=9spots), and to a lesser extent as proteins involved in the immune system (n=2spots), with some proteins having overlapping functions on metabolism (n=7spots). The number of protein changes was proportional to the severity of the mutation. Our findings reveal for the first time the presence of a subclinical chronic inflammatory status related to the “pseudo-autistic” phase of RTT, which is related to the severity carried by theMECP2gene mutation.


2019 ◽  
Author(s):  
Elliott Rees ◽  
Jun Han ◽  
Joanne Morgan ◽  
Noa Carrera ◽  
Valentina Escott-Price ◽  
...  

AbstractSchizophrenia is a highly polygenic disorder with important contributions coming from both common and rare risk alleles, the latter including CNVs and rare coding variants (RCVs), sometimes occurring as de novo variants (DNVs). We performed DNV analysis in whole exome-sequencing data obtained from a new sample of 613 schizophrenia trios, and combined this with published data for a total of 3,444 trios. Loss-of-function (LoF) DNVs were significantly enriched among 3,488 LoF intolerant genes in our new trio data (rate ratio (RR) (95% CI) = 2.23 (1.31, 3.79); p = 2.2 × 10−3), supporting previous findings. In the full dataset, genes associated with neurodevelopmental disorders (NDD; n=160) were significantly enriched for LoF DNVs (RR (95% CI) = 3.32 (2.0, 5.21); p = 7.4 × 10−6). Within this set of NDD genes, SLC6A1, encoding a gamma-aminobutyric acid transporter, was associated with missense-damaging DNVs (p = 5.2 × 10−5). Using data from a subset of 1,122 trios for which we had genome-wide common variant data, schizophrenia polygenic risk was significantly over-transmitted to probands (p = 2.6 × 10−60), as was bipolar disorder common variant polygenic risk (p = 5.7 × 10−17). We defined carriers of candidate schizophrenia-related DNVs as those with LoF or deletion DNVs in LoF intolerant or NDD genes. These individuals had significantly less over-transmission of common risk alleles than non-carriers (p = 3.5 × 10−4), providing robust support for the hypothesis that this set of DNVs is enriched for those related to schizophrenia.


2020 ◽  
Author(s):  
Dong Li ◽  
Qin Wang ◽  
Naihua N. Gong ◽  
Alina Kurolap ◽  
Hagit Baris Feldman ◽  
...  

Intellectual disability (ID) encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for over 50% of the patients remains elusive. We describe mutations in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a novel neurodevelopmental disorder, identifying twelve individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature, and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.


2021 ◽  
Author(s):  
Haicang Zhang ◽  
Michelle S. Xu ◽  
Wendy K. Chung ◽  
Yufeng Shen

AbstractAccurate prediction of damaging missense variants is critically important for interpretating genome sequence. While many methods have been developed, their performance has been limited. Recent progress in machine learning and availability of large-scale population genomic sequencing data provide new opportunities to significantly improve computational predictions. Here we describe gMVP, a new method based on graph attention neural networks. Its main component is a graph with nodes capturing predictive features of amino acids and edges weighted by coevolution strength, which enables effective pooling of information from local protein sequence context and functionally correlated distal positions. Evaluated by deep mutational scan data, gMVP outperforms published methods in identifying damaging variants in TP53, PTEN, BRCA1, and MSH2. Additionally, it achieves the best separation of de novo missense variants in neurodevelopmental disorder cases from the ones in controls. Finally, the model supports transfer learning to optimize gain- and loss-of-function predictions in sodium and calcium channels. In summary, we demonstrate that gMVP can improve interpretation of missense variants in clinical testing and genetic studies.


2020 ◽  
Vol 29 (10) ◽  
pp. 1592-1606 ◽  
Author(s):  
Faith C J Davies ◽  
Jilly E Hope ◽  
Fiona McLachlan ◽  
Grant F Marshall ◽  
Laura Kaminioti-Dumont ◽  
...  

Abstract Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.


Author(s):  
Lot Snijders Blok ◽  
Arianna Vino ◽  
Joery den Hoed ◽  
Hunter R. Underhill ◽  
Danielle Monteil ◽  
...  

Abstract Purpose Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described. Methods We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants. Results We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein. Conclusion Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.


2021 ◽  
Author(s):  
Ricardo Harripaul ◽  
Ansa Rabia ◽  
Nasim Vasli ◽  
Anna Mikhailov ◽  
Ashlyn Rodrigues ◽  
...  

Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder that affects about 1 in 55 children worldwide and imposes enormous economic and socioemotional burden on families and communities. Genetic studies of ASD have identified de novo copy number variants (CNVs) and point mutations that contribute significantly to the genetic architecture of ASD, but the majority of these studies were conducted in outbred populations, which are not ideal for detecting autosomal recessive (AR) inheritance. However, several studies have investigated ASD genetics in consanguineous populations and point towards AR as an under-appreciated source of ASD variants. Here, we used trio whole exome sequencing (WES) to look for rare variants for ASD in 115 proband-mother-father trios from populations with high rates of consanguinity, namely Pakistan, Iran, and Saudi Arabia. In total, we report 87 candidate sequence variants, with 57% biallelic, 21% autosomal dominant/de novo, and the rest X-linked. 52% of the variants were loss of function (LoF) or putative LoF (splice site, stop loss) and 47% non-synonymous. Our analysis indicates an enrichment of previously identified and candidate AR genes. These include variants in genes previously reported for AR ASD and/or intellectual disability (ID), such as AGA, ASL, ASPA, BTN3A2, CC2D1A, DEAF1, HTRA2, KIF16B, LINS1, MADD, MED25, MTHFR, RSRC1, TECPR2, VPS13B, ZNF335, and 32 previously unreported candidates, including 15 LoF or splice variants, in genes such as DAGLA, EFCAB8, ENPP6, FAXDC2, ILDR2, PKD1L1, SCN10A, and SLC36A1. We also identified candidate biallelic exonic loss CNVs a number of trios, implicating genes including DNAH7, and DHRS4/DHRS4L2.


Sign in / Sign up

Export Citation Format

Share Document