Monte Carlo kilovoltage X-ray tube simulation: A statistical analysis and compact simulation method

2020 ◽  
Vol 72 ◽  
pp. 80-87
Author(s):  
G.J. Bootsma ◽  
H. Nordström ◽  
M. Eriksson ◽  
D.A. Jaffray
Author(s):  
Jing Jin ◽  
Yixiao Liu ◽  
Xiaoyu Li ◽  
Yi Shen ◽  
Liangwei Huang
Keyword(s):  

2014 ◽  
Vol 32 (2) ◽  
pp. 233-241 ◽  
Author(s):  
F. Fiorini ◽  
D. Neely ◽  
R.J. Clarke ◽  
S. Green

AbstractWe present a new simulation method to predict the maximum possible yield of X-rays produced by electron beams accelerated by petawatt lasers irradiating thick solid targets. The novelty of the method lies in the simulation of the electron refiluxing inside the target implemented with the Monte Carlo code Fluka. The mechanism uses initial theoretical electron spectra, cold targets and refiluxing electrons forced to re-enter the target iteratively. Collective beam plasma effects are not implemented in the simulation. Considering the maximum X-ray yield obtained for a given target thickness and material, the relationship between the irradiated target mass thickness and the initial electron temperature is determined, as well as the effect of the refiluxing on X-ray yield. The presented study helps to understand which electron temperature should be produced in order to generate a particular X-ray beam. Several applications, including medical and security imaging, could benefit from laser generated X-ray beams, so an understanding of the material and the thickness maximizing the yields or producing particular spectral characteristics is necessary. On the other more immediate hand, if this study is experimentally reproduced at the beginning of an experiment in which there is an interest in laser-driven electron and/or photon beams, it can be used to check that the electron temperature is as expected according to the laser parameters.


2004 ◽  
Vol 10 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Hendrix Demers ◽  
Raynald Gauvin

The microanalysis of nonconductive specimen in a scanning electron microscope is limited by charging effects. Using a charge density model for the electric field buildup in a nonconductive specimen irradiated by electrons, a Monte Carlo simulation method has been applied to alumina (Al2O3). The results show a change in the depth distribution for characteristic and bremsstrahlung X-ray, φ(ρz) curves, and ψ(ρz) curves (with absorption) for both elements' Kα lines. The influence of the electric field on the measured X-ray intensity is shown. The dependency of this influence by the three parameters, electron energy, X-ray energy, and charge density, is clarified.


1977 ◽  
Vol 21 ◽  
pp. 129-142 ◽  
Author(s):  
R. P. Gardner ◽  
L. Wielopolski ◽  
J. M. Doster

The Monte Carlo simulation method that has been previously developed and demonstrated for EDXRF analysis with annular radioisotope excitation sources is extended to systems using secondary fluorescer X-ray machines for excitation. Comparisons of the Monte Carlo predictions with experimental results indicate that the modification is valid.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Sign in / Sign up

Export Citation Format

Share Document