Production of dosage forms for oral drug delivery by laminar extrusion of wet masses

2013 ◽  
Vol 84 (3) ◽  
pp. 626-632 ◽  
Author(s):  
Katrin C. Müllers ◽  
Martin A. Wahl ◽  
João F. Pinto
Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


Author(s):  
MANDAR J BHANDWALKAR ◽  
PRASAD S DUBAL ◽  
AKASH K.TUPE ◽  
SUPRIYA N MANDRUPKAR

In recent years, gastroretentive drug delivery system (GRDDS) has gained researcher’s interest in the field of oral drug delivery. Various GRDDS approaches can be utilized to retain the dosage forms in the stomach and to release the drug slowly for an extended period of time. GRDDS can be used to prolong the residence time of delivery system in the stomach. This results in targeting of drug release at a specific site for the systemic or local effects. GRDDS can be used to overcome challenges associated with conventional oral dosage forms and to release the drug at a specific absorption site to improve bioavailability of particular drug substance. The challenges include fast gastric emptying of the dosage form which results in the poor bioavailability of the drug. Prolongation of the retention of drugs in stomach those having low solubility at high intestinal pH improves the solubility of drugs. GRDDS has proved to be effective in systemic actions as well as in local actions to treat gastric or duodenal ulcers. Local activity in the upper part of the small intestine can be obtained by improving the residence time of delivery system in the stomach. The system is useful for drugs which are unstable in the intestine or having a low solubility/permeability in the small intestine. Various GRDDS approaches include high density (sinking) systems, low-density (floating systems), mucoadhesive, expandable, unfoldable, superporous hydrogel systems, and magnetic systems.


Author(s):  
Ranjith Kumar Mamidala ◽  
Vamshi Ramana ◽  
Sandeep G ◽  
Meka Lingam ◽  
Ramesh Gannu ◽  
...  

Of all drug delivery systems, oral drug delivery remains the most preferred option for administration for various drugs. Availability of wide variety of polymers and frequent dosing intervals helps the formulation scientist to develop sustained/controlled release products. Oral Sustained release (S.R) / Controlled release (C.R) products provide an advantage over conventional dosage forms by optimizing bio-pharmaceutic, pharmacokinetic and pharmacodynamic properties of drugs in such a way that it reduces dosing frequency to an extent that once daily dose is  sufficient for therapeutic management through uniform plasma concentration providing maximum utility of drug  with reduction in local and systemic side effects and cure or control condition in shortest possible time by smallest quantity of drug to assure greater patient compliance. This review describes the various factors influencing the design and performance of sustained/controlled release products along with suitable illustrations.


2021 ◽  
Vol 9 (4) ◽  
pp. 810-825
Author(s):  
Ahmed Akif Khan ◽  
◽  
Afra Azeem ◽  

Medication conveyance systems are getting progressively complex as drug researchers gain a superior comprehension of the physicochemical and biochemical parameters appropriate to their performance. In the course of recent many years, Fast Dissolving Tablets (FDTs) have acquired a lot of consideration as a preferred option in contrast to regular oral dose structures like tablets and containers. FDTs are strong unit dosage forms containing therapeutic substances which break down or disintegrate quickly for the most part surprisingly fast, when they interact with saliva, in this manner obviating the prerequisite of water during the administration. Hence, these dosage forms have attracted the market for a specific segment of the patient populace which incorporates dysphagic, incapacitated, mystic, geriatric and pediatric patients. This has supported both the scholarly community and industry to produce new orally breaking down formulations and innovative methodologies in this field. This article centers around the different plan angles, disintegrates utilized and innovations produced for FDTs, alongside different excipients, assessment tests, promoted definitions, future possibilities, and medications investigated in this field.


2019 ◽  
Vol 9 (1) ◽  
pp. 303-317
Author(s):  
SANTOSH KUMAR RADA ◽  
Annu Kumari

Drug delivery by the oral route is the most prescribable and acceptable route in terms of patient’s compliance. Improvement of patient’s compliance has always a challenge towards the development of oral drug delivery system. In the market different types of oral dosage forms are available in which tablets, capsules, syrups, suspensions are preferred ones. Oral solid drug delivery faces drawback in case of swallowing especially with paediatrics and geriatric psychotic patients. Therefore scientists attracted towards fast mouth dissolving drug delivery systems to encounter existing problems with unique property of palatability and rapid disintegration. The concept of fast dissolving tablet came into existence in late 1970 and further improvements are still going on in connection with its preparation and methodology. Fast dissolving tablets have faster disintegration and dissolution rate and releases within 30 seconds as they come in contact with saliva. These systems also obviate the requirement of carry water during drug administration. This facilitate drug delivery to the patients of dysphasic, psychic, paediatrics, geriatric and bed-ridden, unconscious population. As fast dissolving tablets falls under desired expectation of safer, convenient and economical solid dosage forms, several techniques have been developed to improve disintegration quality in the recent past years. This article mainly focuses on formulation and evaluation technologies with recent advancement made so far in the field of fast dissolving tablets. Keywords: Fast disintegration; Dysphasia; Mouth dissolving; Self-medication.


2021 ◽  
Vol 001 (03) ◽  
Author(s):  
Akshay Parihar ◽  
Bhupendra Prajapati ◽  
Himanshu Paliwal

Pelletization technology is gaining very much attention in present times as it has provided a competent pathway for the oral drug delivery system manufacturing. Pellets offers many biopharmaceuticals as well as technological recompenses over the conventional dosage forms. Pellets offer required strength for dose which can be blended for the delivery of incompatible bioactive agents and helps in providing different release profiles. In this review we will be discussing the extensively used techniques of pelletization, extrusion and spheronization in detail with their methods and applications in the field of pharmacy as a competent pathway for the novel drug delivery systems.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 112-114
Author(s):  
Rada Santosh Kumar ◽  
B. Kusuma Latha ◽  
D. Tirumalesh

Oral Drug Delivery is considered as the holy grail of drug delivery due to its convenience which resulted in high patient compliance of all the drug delivery systems that have been explored, oral drug delivery is the most preferred option for systemic delivery of drug via various pharmaceutical products of different dosage forms. The advantage of administering a single dose of drug which is released over an extended period of time, instead of administering numerous doses, is now a day’s area of interest for formulation scientists in the pharmaceutical industry. For this reason, the conventional dosage forms of drugs are rapidly being replaced by the new and the novel drug delivery systems. Amongst these, the controlled release dosage forms have gradually gained medical acceptance and became extremely popular in modern therapeutics. In order to control the release of drug from its dosage form, an effective controlled release polymer is essential. Though, there are several controlled release polymers available in the market, there is continuous need to develop controlled polymers which are safe and inexpensive. The aim of the work was to isolate and characterize the Azadirachta indica gum as novel controlled release polymer. Keywords: Isolation, Controlled release, Azadirachta indica


Sign in / Sign up

Export Citation Format

Share Document