Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review

2020 ◽  
Vol 153 ◽  
pp. 273-284 ◽  
Author(s):  
Francesca Damiani Victorelli ◽  
Valéria Maria de Oliveira Cardoso ◽  
Natália Noronha Ferreira ◽  
Giovana Maria Fioramonti Calixto ◽  
Carla Raquel Fontana ◽  
...  
2018 ◽  
Vol 24 (28) ◽  
pp. 3303-3319 ◽  
Author(s):  
Erfaneh Ghassami ◽  
Jaleh Varshosaz ◽  
Somayeh Taymouri

Background: Among the numerous bio-responsive polymeric drug delivery systems developed recently, redox-triggered release of molecular payloads have gained great deal of attention, especially in the field of anticancer drug delivery. In most cases, these systems rely on disulfide bonds located either in the matrix crosslinks, or in auxiliary chains to achieve stimuli-responsive drug release. These bonds keep their stability in extracellular environments, yet, rapidly break by thiol–disulfide exchange reactions in the cytosol, due to the presence of greater levels of glutathione. Polysaccharides are macromolecules with low cost, natural abundance, biocompatibility, biodegradability, appropriate physical and chemical properties, and presence of numerous functional groups which facilitate chemical or physical cross-linking. Methods: With regards to the remarkable advantages of polysaccharides, in the current study, various polysaccharide-based redox-responsive drug delivery systems are reviewed. In most cases the in vitro/in vivo effects of the developed system were also evaluated. Results: Considering the hypoxic and reducing nature of the tumor microenvironment, with several folds higher glutathione levels than the systemic tissues, redox-sensitive polymeric systems could be implemented for tumorspecific drug delivery and the results of the previous researches in this field indicated satisfactory achievements. Conclusion: According to the reviewed papers, the efficiency of diverse redox-responsive polysaccharide-based nanoparticles with therapeutic payloads in cancer chemotherapy could be concluded. Nevertheless, more comprehensive studies are required to understand the exact intracellular and systemic fate of these nano-carriers, as well as their clinical efficacy for cancer treatment.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ozge Esim ◽  
Canan Hascicek

: Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuously differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1344 ◽  
Author(s):  
Miltiadis Fiorentzis ◽  
Arne Viestenz ◽  
Udo Siebolts ◽  
Berthold Seitz ◽  
Sarah E. Coupland ◽  
...  

Uveal melanoma (UM) is the most common primary intraocular tumor that arises from neoplastic melanocytes in the choroid, iris, and ciliary body. Electrochemotherapy (ECT) has been successfully established for the treatment of skin and soft tissue metastatic lesions, deep-seated tumors of the liver, bone metastases, and unresectable pancreas lesions. The aim of this study was to evaluate the effect of ECT in vitro in 3D spheroid culture systems in primary and metastatic UM cell lines. We also investigated the chick embryo chorioallantoic membrane (CAM) as an in vivo model system for the growth and treatment of UM tumors using ECT. The cytotoxic effect of ECT in 3D spheroids was analyzed seven days following treatment by assessment of the size and MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction] assay. The cytotoxicity of ECT after intratumoral or intraarterial administration was evaluated histologically. In vitro and in vivo ECT caused a significant reduction in tumor size and viability compared to electroporation or chemotherapy in both sections of our study. The current results underline the effectiveness of ECT in the treatment of UM and prepare the way for further investigation of its potential application in UM.


2019 ◽  
Vol 20 (23) ◽  
pp. 6056 ◽  
Author(s):  
Shreffler ◽  
Pullan ◽  
Dailey ◽  
Mallik ◽  
Brooks

Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano–bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle’s interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


Sign in / Sign up

Export Citation Format

Share Document