scholarly journals Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

2017 ◽  
Vol 26 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Mehdi Mohammad Salehi ◽  
Pouria Omidvar ◽  
Fatemeh Naeimi
1966 ◽  
Vol 6 (01) ◽  
pp. 55-61 ◽  
Author(s):  
J.J. Pickell ◽  
B.F. Swanson ◽  
W.B. Hickman

Abstract Many physical properties of the porous media-immiscible liquid system are dependent upon the distribution of fluids within the pores; this in turn, is primarily a function of pore structure, liquid-liquid interfacial tension and liquid-solid wetting conditions. The capillary pressure hysteresis process provides a means of investigating the influence of pore structure upon fluid distribution for consistent surface conditions. Investigations indicate that residual non-wetting-phase saturations following the imbibition process (i.e., wetting phase displacing non-wetting phase) are dependent upon both pore structure and initial non-wetting phase saturation and suggest that residual fluid is distributed to discontinuous globules, one to a few pore sizes in dimension, through the entire range of pore sizes originally occupied. It appears that air-mercury capillary pressure data adequately reflect the distribution of fluids in a water-oil system when strong wetting conditions prevail. An oil-air counter-current imbibition technique has also been found to provide a rapid means of obtaining residual-initial saturation data. In a majority of cases, residual saturations determined from the oil-air or air-mercury process reasonably approximate residual oil and saturation following water drive of a strongly water-wet medium. Introduction A reliable estimate of recoverable reserves depends not only on the amount of original oil-in-place but also on pore geometry and distribution of fluids within the pores. A critical parameter determining the recovery from a reservoir under waterflood, for example, is the amount and distribution of residual oil within the various rock types present. The purpose of this paper is to investigate the mechanism of capillary trapping and assess its importance in laboratory measurements of residual oil saturation. The degree of wettability of a reservoir rock is recognized as an important factor in waterflood or imbibition experiments. In this paper, however, only the water-wet case has been considered. Considerable experimental evidence1 suggests that for water-wet rocks, capillary forces predominate in the distribution of fluids and that viscous forces in the range normally of interest in the reservoir have a minimum influence on residual oil saturation. It follows that if the ultimate recovery is controlled by pore geometry, a unique residual non-wetting phase saturation should exist for a given set of initial conditions. Two laboratory procedures found to be extremely useful in the study of pore structure and degree of fluid interconnection at various saturations are described. Although air-mercury capillary injection curves have been used2 previously to characterize the drainage case, the withdrawal or imbibition case can provide valuable supplementary data. The air-mercury process, however, has several disadvantages; it is difficult to run in a sufficiently accurate manner, mercury does not always act as a strongly non-wetting liquid and in the air-mercury process the sample is rendered unsuitable for future analyses. An alternative process is described in which air is the non-wetting phase and naptha, heptane, octane or toluene is the wetting phase. Interfacial Tension and Capillary Pressure Interfacial tension between immiscible fluids is due to the difference in attraction of like molecules as compared with their attraction to molecules of the neighboring fluid. This net attraction results in a tension at the interface. To extend the interface; thus, interfacial tension s can also be thought of as free surface energy. Interfacial tension is normally expressed as dynes/cm, and interfacial energy is measured in ergs/cm2 hence, both have dimensions mLt-2 and are numerically equal.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 481-496 ◽  
Author(s):  
Pål Østebø Andersen

Summary Many experimental studies have investigated smart water and low-salinity waterflooding and observed significant incremental oil recovery after changes in the injected-brine composition. The common approach to model such enhanced-oil-recovery (EOR) mechanisms is by shifting the input relative permeability curves, particularly including a reduction of the residual oil saturation. Cores that originally display oil-wetness can retain much oil at the outlet of the flooded core because of the capillary pressure being zero at a high oil saturation. This end effect is difficult to overcome in highly permeable cores at typical laboratory rates. Injecting a brine that changes the wetting state to less-oil-wet conditions (represented by zero capillary pressure at a lower oil saturation) will lead to a release of oil previously trapped at the outlet. Although this is chemically induced incremental oil, it represents a reduction of remaining oil saturation, not necessarily of residual oil saturation. This paper illustrates the mentioned issues of interpreting the difference in remaining and residual oil saturation during chemical EOR and hence the evaluation of potential smart water effects. We present a mathematical model representing coreflooding that accounts for wettability changes caused by changes in the injected composition. For purpose of illustration, this is performed in terms of adsorption of a wettability-alteration (WA) component coupled to the shifting of relative permeability curves and capillary pressure curves. The model is parameterized in accordance with experimental data by matching brine-dependent saturation functions to experiments where wettability alteration takes place dynamically because of the changing of one chemical component. It is seen that several effects can give an apparent smart water effect without having any real reduction of the residual oil saturation, including changes in the mobility ratio, where the oil already flowing is pushed more efficiently, and the magnitude of capillary end effects can be reduced because of increased water-wetness or because of a reduction in water relative permeability giving a greater viscous drag on the oil.


2021 ◽  
Author(s):  
Prakash Purswani ◽  
Russell T. Johns ◽  
Zuleima T. Karpyn

Abstract The relationship between residual saturation and wettability is critical for modeling enhanced oil recovery (EOR) processes. The wetting state of a core is often quantified through Amott indices, which are estimated from the ratio of the saturation fraction that flows spontaneously to the total saturation change that occurs due to spontaneous flow and forced injection. Coreflooding experiments have shown that residual oil saturation trends against wettability indices typically show a minimum around mixed-wet conditions. Amott indices, however, provides an average measure of wettability (contact angle), which are intrinsically dependent on a variety of factors such as the initial oil saturation, aging conditions, etc. Thus, the use of Amott indices could potentially cloud the observed trends of residual saturation with wettability. Using pore network modeling (PNM), we show that residual oil saturation varies monotonically with the contact angle, which is a direct measure of wettability. That is, for fixed initial oil saturation, the residual oil saturation decreases monotonically as the reservoir becomes more water-wet (decreasing contact angle). Further, calculation of Amott indices for the PNM data sets show that a plot of the residual oil saturation versus Amott indices also shows this monotonic trend, but only if the initial oil saturation is kept fixed. Thus, for the cases presented here, we show that there is no minimum residual saturation at mixed-wet conditions as wettability changes. This can have important implications for low salinity waterflooding or other EOR processes where wettability is altered.


2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

Chemical Enhanced Oil Recovery (cEOR) processes comprise a number of techniques whichmodify the rock/fluid properties in order to mobilize the remaining oil. Among these, surfactantflooding is one of the most used and well-known processes; it is mainly used to decrease the interfacialenergy between the phases and thus lowering the residual oil saturation. A novel two-dimensionalflooding simulator is presented for a four-component (water, petroleum, surfactant, salt), two-phase(aqueous, oleous) model in porous media. The system is then solved using a second-order finitedifference method with the IMPEC (IMplicit Pressure and Explicit Concentration) scheme. The oilrecovery efficiency evidenced a strong dependency on the chemical component properties and itsphase behaviour. In order to accurately model the latter, the simulator uses and improves a simplifiedternary diagram, introducing the dependence of the partition coefficient on the salt concentration.Results showed that the surfactant partitioning between the phases is the most important parameterduring the EOR process. Moreover, the presence of salt affects this partitioning coefficient, modifyingconsiderably the sweeping efficiency. Therefore, the control of the salinity in the injection water isdeemed fundamental for the success of EOR operations with surfactants.


1983 ◽  
Vol 23 (03) ◽  
pp. 417-426 ◽  
Author(s):  
Philip J. Closmann ◽  
Richard D. Seba

Abstract This paper presents results of laboratory experiments conducted to determine the effect of various parameters on residual oil saturation from steamdrives of heavy-oil reservoirs. These experiments indicated that remaining oil saturation, both at steam breakthrough and after passage of several PV of steam, is a function of oil/water viscosity ratio at saturated steam conditions. Introduction Considerable attention has been given to thermal techniques for stimulating production of underground hydrocarbons, particularly the more viscous oils production of underground hydrocarbons, particularly the more viscous oils and tars. Steam injection has been studied as one means of heating oil in place, reducing its viscosity, and thus making its displacement easier. place, reducing its viscosity, and thus making its displacement easier. A number of investigators have measured residual oil saturations remaining in the steam zone. Willman et al. also analyzed the steam displacement process to account for the oil recoveries observed. A number of methods have been developed to calculate the size of the steam zone and to predict oil recoveries by application of Buckley-Leverett theory, including the use of numerical simulation. The work described here was devoted to an experimental determination of oil recovery by steam injection in linear systems. The experiments were unscaled as far as fluid flow rates, gravity forces, and heat losses were concerned. Part of the study was to determine recoveries of naturally occurring very viscous tars in a suite of cores containing their original oil saturation. The cores numbered 95, 140, and 143 are a part of this group. Heterogeneities in these cores, however, led to the extension of the work to more uniform systems, such as sandpacks and Dalton sandstone cores. Our interest was in obtaining an overall view of important variables that affected recovery. In particular, because of the significant effect of steam distillation, most of the oils used in this study were chosen to avoid this factor. We also studied the effect of pore size on the residual oil saturation. As part of this work, we investigated the effect of the amount of water flushed through the system ahead of the steam front in several ways:the production rate was varied by a factor of four,the initial oil saturation was varied by a factor of two, andthe rate of heat loss was varied by removing the heat insulation from the flow system. Description of Apparatus and Experimental Technique Two types of systems were studied: unconsolidated sand and consolidated sandstone. The former type was provided by packing a section of pipe with 50–70 mesh Ottawa sand. Most runs on this type of system were in an 18-in. (45.72-cm) section of 1 1/2 -in. (3.8 1 -cm) diameter pipe, although runs on 6-in. (15.24-cm) and 5-ft (152.4-cm) lengths were also included. Consolidated cores 9 to 13 in. (22.86 to 33.02 cm) long and approximately 2 1/4 in. (5.72 cm) in diameter were sealed in a piece of metal pipe by means of an Epon/sand mixture. A photograph of two 9-in. (22.86-cm) consolidated natural cores (marked 95 and 143) from southwest Missouri, containing original oil, is shown as Fig. 1. In all steamdrive runs, the core was thermally insulated to reduce heat loss, unless the effect of heat loss was specifically being studied. Flow was usually horizontal except for the runs in which the effects of flushing water volume and of unconsolidated-sand pore size were examined. Micalex end pieces were used on the inlet end in initial experiments with consolidated cores to reduce heat leakage from the steam line to the metal jacket on the outside of the core. During most runs, however, the entire input assembly eventually became hot. SPEJ p. 417


1975 ◽  
Vol 15 (05) ◽  
pp. 376-384 ◽  
Author(s):  
R.M. Weinbrandt ◽  
H.J. Ramey ◽  
F.J. Casse

MEMBERS SPE-AIME Abstract Equipment was constructed to perform dynamic displacement experiments on small core samples under conditions of elevated temperature. Oil-water flowing fraction and pressure drop were recorded continuously for calculation of both the relative permeability ratio and the individual relative permeability ratio and the individual relative permeabilities. Imbibition relative permeabilities permeabilities. Imbibition relative permeabilities were measured for five samples of Boise sandstone at room temperature and at 175deg.F. The fluids used were distilled water and a white mineral oil. The effect of temperature on absolute permeability was investigated for six Boise sandstone samples and two Berea sandstone samples. Results for all samples were similar. The irreducible water saturation increased significantly, while the residual oil saturation decreased significantly with temperature increase. The individual relative permeability to oil increased for all water saturations below the room-temperature residual oil saturation, but the relative permeability to water at flood-out increased with permeability to water at flood-out increased with temperature increase. Absolute permeability decreased with temperature increase. Introduction Test environment is generally acknowledged to have a significant effect on measurement of relative permeability. The environment consists not only permeability. The environment consists not only of the temperature and pressure, but also of the fluids used and the core condition. Several workers have used the approach of completely simulating the reservoir conditions in the laboratory experiment. Such methods are termed "restored state." Restored state data are generally different from "room condition" data; since several variables are involved, it is difficult to determine the importance of each variable. Another approach used attributes the changes in relative permeability to changes in the rock-fluid interaction or wettability. Wettability, however, depends on many variables. Specifically, wettability depends on the composition of the rock surface, the composition of the fluids, the saturation history of the rock surface, and the temperature and pressure of the system. The purpose of this study is to isolate temperature as a variable in the relative permeability of a given rock-fluid system. Work on isolation of temperature as a variable in relative permeability has been conducted since the early 1960s. Edmondsons established results in 1965 for a Berea sandstone core using both water/refined oil and water/crude oil as fluid pairs. He showed a change in the relative permeability ratio accompanied by a decrease in the residual oil saturation with temperature increase. Edmondson showed no data for water saturations below 40 percent, and his curves show considerable scatter in the middle saturation ranges. Edmondson's work was the only study to use consolidated cores to investigate the effect of temperature on relative permeability measurements. Poston et al. presented waterflood data for sand packs containing 80-, 99-, a nd 600-cp oil, and packs containing 80-, 99-, a nd 600-cp oil, and observed an increase in the individual relative permeabilities with temperature increase. The permeabilities with temperature increase. The increase in the oil and the water permeability was accompanied by an increase in irreducible water saturation and a decrease in the residual oil saturation with temperature increase. Poston et al. was the only work to present individual oil and water permeability. Davidsons presented results for displacement of No. 15 white oil from a sand pack by distilled water, steam, or nitrogen. However, he found little permeability-ratio dependence in the middle permeability-ratio dependence in the middle saturation ranges. Davidson, too, found a decrease in the residual oil saturation with temperature increase, but he did not include data on irreducible water saturation. SPEJ P. 376


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Renyi Cao ◽  
Changwei Sun ◽  
Y. Zee Ma

Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.


1982 ◽  
Vol 22 (05) ◽  
pp. 722-730 ◽  
Author(s):  
L.L. Handy ◽  
J.O. Amaefule ◽  
V.M. Ziegler ◽  
I. Ershaghi

Abstract The thermal stabilities of several sulfonate surfactantsand one nonionic surfactant have been evaluated. Thedecomposition reactions have been observed to followfirst-order kinetics. Consequently, a quantitativemeasure of a surfactant's stability at a given temperatureis its half-life. Furthermore, the activation energy can beestimated from rate data obtained at two or moretemperatures. This permits limited extrapolation of theobserved decomposition rates to lower temperatures forwhich the rates are too low for convenient measurement.The surfactants we investigated are being considered forsteamflood additives and need to be relatively stable atsteam temperatures.None of the surfactants evaluated to date has therequisite stability for use in steamfloods. The most stablepetroleum sulfonate we have investigated has a half-lifeof 11 days at 180 degrees C (356 degrees F). With this half-life, substantial overdosing would be required tomaintain the minimum effective surfactant concentration forthe life of the flood. On the other hand, the estimatedhalflife for this surfactant at 93 degrees C (200 degrees F), calculated by extrapolation, would be 33 years.Tests with the nonionic surfactant, nonylphenoxy-polyethanol, have shown this material to have a very short half-life at steam temperatures, but it doesappear to be more stable at concentrations greater than thecritical micelle concentration(CMC). In limited tests, the sulfonates showed increased stability in the presenceof a 2-M salt solution. Introduction Several chemical additives are being considered for usewith steamfloods to reduce the producing steam/oilratios and to increase oil recovery from steam projects.The emphasis to date has been on inorganic chemicaladditives. Sodium hydroxide has been used in the fieldwithout success. We have been investigating thepotential benefits of using organic surfactants. This hasbeen discusssed recently by Brown et al. and byGopalakrishnan et al. The surfactant would be introducedinto the reservoir along, with the steam at the beginning ofthe steamflood and, possibly, intermittently during the floodprocess. The surfactant would be injected in diluteconcentrations and would be expected to travel in thatportion of the reservoir being flooded by hot water.Although the residual oil saturation in the steam zone has been observed to be very low, residual saturation in thehot water portion of the steamflood is expected to be thenormal waterflood residual. A surfactant in the hot watermay reduce this residual oil saturation. A synergistic effect could be observed between the surfactant and thetemperature to give better performance than would beobserved for a surfactant flood at normal reservoirtemperatures.For the process to work as anticipated, the surfactantmust move in the heated portion of the reservoir, and it must be sufficiently stable at elevated temperatures tofunction as an effective recovery agent for the life of theflood. Therefore, two aspects of the process are beingstudied simultaneously. One of these is the effect oftemperature on adsorption of the surfactants, and theother is the effect of heat on the stability of thesurfactants. The effect of temperature on adsorption will bediscussed in a later paper. The objective of this paper isto discuss the experimental evaluation of the thermalstability of some surfactant types that could haveapplication in reservoir floods. The effect of temperatureon adsorption and stability of these surfactants also willbe important in micellar floods at higher reservoirtemperatures. Experimental Procedures Several anionic and noninoic surfactants were selectedfor evaluation. SPEJ P. 722^


1998 ◽  
Vol 1 (02) ◽  
pp. 127-133 ◽  
Author(s):  
E.A. Lange

Abstract A promising correlation has been developed that can be used to predict miscible or near-miscible residual oil saturation, Sorm, for a wide range of injected gases, crude oils, temperature, and pressure conditions. The correlation is based on representation of the chemical and physical properties of the crude oil and the injected gas through Hildebrand solubility parameters. This approach has the advantage that characteristics of both the injected gas and crude oil are included in the correlation, in contrast to correlations based solely on properties of the injected gas. The correlation was developed using available experimental data for tertiary recovery of eight crude oils in carbonate and sandstone cores with common EOR gases (CO2, N2, CH4, CH4 + liquefied petroleum gas). Results for 45 coreflood tests at reservoir conditions collapsed along a band when Sorm was plotted as a function of the difference in solubility parameter between the injected gas and the crude oil. Results for a pure oil, decane, with CO2 lay along the same band. The success of this correlation scheme may be due to the basic characterization of the fluids and to a relationship between solubility parameters and interfacial tension. Use of the correlation requires knowledge of only injected gas composition, injected gas density, oil average molecular weight, and temperature. This empirical correlation should have utility in screening studies or in process simulation as a simple means to forecast residual oil saturations as measured in coreflood tests. The correlation can be used to predict roughly the effects of changes in pressure, temperature, or injected gas composition on residual oil saturation. A new method to predict minimum miscibility pressure based on the solubility parameter concept is also described. Introduction The miscible residual oil saturation, Sorm, is a key property for simulation and screening studies of gas injection EOR processes. This property represents the oil saturation remaining in a porous media after injection of a large bank of a high pressure gas, such as CO2, N2, or CH4, after a waterflood. The miscible residual oil saturation thus represents the local displacement efficiency of oil by the injected gas in a ternary system of oil, gas, and water. Injected gases are frequently supercritical fluids, and proposed mechanisms of oil recovery include low interfacial tension displacement, extraction, and oil swelling. Within the industry, a common parameter used in design of these processes is the minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) level for hydrocarbon gases as determined from sandpack slim-tube tests. Recent work has suggested use of reservoir-condition coreflood data in design of gas injection EOR processes instead of MMP or MME levels. Miscible recovery processes have been studied extensively, and a variety of schemes have been developed to predict MMP. In contrast to the large number of predictive schemes for MMP, few methods have been proposed to predict Sorm. Use of a capillary number correlation has been suggested, but this approach requires knowledge of interfacial tension between equilibrated phases. A correlation of residual oil saturation with pore structure in carbonates has been suggested as well as correlations of Sorm with reduced density of the injected gas for one crude oil with several hydrocarbon gases. Although interesting, these approaches do not meet the need for a general method to predict Sorm for any injected gas and any crude oil, and laboratory coreflood tests at reservoir conditions are usually recommended to determine this important measure of local displacement efficiency.


Sign in / Sign up

Export Citation Format

Share Document