The role of multi-drug resistance p-glycoprotein in glucocorticoid function: Studies in animals and relevance in humans

2008 ◽  
Vol 583 (2-3) ◽  
pp. 263-271 ◽  
Author(s):  
Carmine M. Pariante
2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Lakshana Sreenivasan ◽  
Hui Wang ◽  
Shyong Quin Yap ◽  
Pascal Leclair ◽  
Anthony Tam ◽  
...  

AbstractMedulloblastoma (MB) is a high-grade pediatric brain malignancy that originates from neuronal precursors located in the posterior cranial fossa. In this study, we evaluated the role of STAT3 and IL-6 in a tumor microenvironment mediated drug resistance in human MBs. We established that the Group 3 MB cell line, Med8A, is chemosensitive (hence Med8A-S), and this is correlated with a basal low phosphorylated state of STAT3, while treatment with IL-6 induced robust increases in pY705-STAT3. Via incremental selection with vincristine, we derived the stably chemoresistant variant, Med8A-R, that exhibited multi-drug resistance, enhanced IL-6 induced pY705-STAT3 levels, and increased IL6R expression. Consequently, abrogation of STAT3 or IL6R expression in Med8A-R led to restored chemosensitivity to vincristine, highlighting a prominent role for canonical IL-6/STAT3 signaling in acquired drug resistance. Furthermore, Med8A-S subjected to conditioning exposure with IL-6, termed Med8A-IL6+ cells, exhibited enhanced vincristine resistance, increased expression of pY705-STAT3 and IL6R, and increased secretion of IL-6. When cocultured with Med8A-IL6+ cells, Med8A-S cells exhibited increased pY705-STAT3 and increased IL-6 secretion, suggesting a cytokine feedback loop responsible for amplifying STAT3 activity. Similar IL-6 induced phenomena were also observed in the Group 3 MB cell lines, D283 and D341, including increased pY705-STAT3, drug resistance, IL-6 secretion and IL6R expression. Our study unveiled autocrine IL-6 as a promoter of STAT3 signaling in development of drug resistance, and suggests therapeutic benefits for targeting the IL-6/STAT3 signaling axis in Group 3 MBs.


Heterocycles ◽  
2015 ◽  
Vol 90 (1) ◽  
pp. 482
Author(s):  
Takayuki Doi ◽  
Naoko Yamaguchi ◽  
Kosuke Ohsawa ◽  
Kazuoki Nakai ◽  
Masahito Yoshida ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (28) ◽  
pp. 26308-26321 ◽  
Author(s):  
Abhilash K. Ravindranath ◽  
Swayamjot Kaur ◽  
Roman P. Wernyj ◽  
Muthu N. Kumaran ◽  
Karl E. Miletti-Gonzalez ◽  
...  

2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


Open Biology ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 120066 ◽  
Author(s):  
Piet Borst

Although chemotherapy of tumours has scored successes, drug resistance remains the major cause of death of cancer patients. Initial treatment often leaves residual disease, from which the tumour regrows. Eventually, most tumours become resistant to all available chemotherapy. I call this pan-resistance to distinguish it from multi-drug resistance, usually describing resistance caused by upregulation of drug transporters, such as P-glycoprotein. In this review, I discuss mechanisms proposed to explain both residual disease and pan-resistance. Although plausible explanations are at hand for residual disease, pan-resistance is still a mystery. My conclusion is that it is time for a major effort to solve this mystery using the new genetically modified mouse tumour models that produce real tumours resembling cancer in human patients.


Sign in / Sign up

Export Citation Format

Share Document