Development and validation of a direct, non-destructive quantitative method for medroxyprogesterone acetate in a pharmaceutical suspension using FT-Raman spectroscopy

2004 ◽  
Vol 23 (4-5) ◽  
pp. 355-362 ◽  
Author(s):  
T.R.M. De Beer ◽  
G.J. Vergote ◽  
W.R.G. Baeyens ◽  
J.P. Remon ◽  
C. Vervaet ◽  
...  
2018 ◽  
Vol 191 ◽  
pp. 00014 ◽  
Author(s):  
Somia Fellak ◽  
Abdellatif Boukir

As non-destructive technique, FT-Raman spectroscopy has been used to study the molecular structure and monitor changes in the composition of carbohydrates and lignin components containing wood materials. For this purpose, four samples originated from Moroccan cedar wood were analyzed. Following the FT-Raman spectra, it was found that carbohydrates were identified by the bands at 898, 1098, 1123 and 1456 cm-1, while lignin matrix was evaluated by the bands at 1657, 1598 and 1267 cm-1. The decrease of the intensities related to these feature bands reflects the effects of natural degradation phenomenon and shows the evidence of chemical changes and quick deterioration of these contents upon exposure time to natural degradation process. Thus, the FT-Raman tool has the potential to be one of crucial sources to characterize composite materials and to evaluate the chemical changes occurred on their structures under the influence of physico-chemical or biological attacks without causing any damage of the wood surfaces or their supports.


2003 ◽  
Vol 43 (supplement) ◽  
pp. S225
Author(s):  
K. Nakamura ◽  
M. Toida ◽  
T. Shibata ◽  
Y. Ozaki ◽  
S. Era

2003 ◽  
Vol 75 (9) ◽  
pp. 2166-2171 ◽  
Author(s):  
Nicolae Leopold ◽  
Michael Haberkorn ◽  
Thomas Laurell ◽  
Johan Nilsson ◽  
Josefa R. Baena ◽  
...  

1990 ◽  
Vol 68 (7) ◽  
pp. 1196-1200 ◽  
Author(s):  
Steven M. Barnett ◽  
François Dicaire ◽  
Ashraf A. Ismail

The study of colored organometallic complexes by dispersive Raman spectroscopy has been limited due to fluorescence or photodecomposition caused by the visible laser used as the excitation source. As a solution to this problem, FT-Raman spectroscopy with a near-infrared laser source has been useful in lowering fluorescence or photolysis in these samples. To investigate the utility of this technique, we have obtained and assigned the FT-Raman spectra of a series of arene chromium tricarbonyl complexes and of cyclopentadienyl manganese tricarbonyl. Some bands previously unobserved by dispersive Raman spectroscopy were seen, including a band assigned to a 13CO satellite in the spectrum of methylbenzoate chromium tricarbonyl. In addition, FT-Raman data for bovine serum albumin (BSA) and Protein-A are presented. Keywords: FT-Raman spectroscopy, metal carbonyl, proteins, organometallics, near infrared.


Author(s):  
Paul A. Venz ◽  
Ray L. Frost ◽  
J.R. Bartlett ◽  
J.L. Woolfrey

Sign in / Sign up

Export Citation Format

Share Document