Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils

2019 ◽  
Vol 94 ◽  
pp. 103116 ◽  
Author(s):  
Jian Zhu ◽  
Hua Peng ◽  
Xionghui Ji ◽  
Changjun Li ◽  
Shengnan Li
2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Li ◽  
Wenjing Li ◽  
Lei Ji ◽  
Fanyong Song ◽  
Tianyuan Li ◽  
...  

The biodegradation of organic pollutants is the main pathway for the natural dissipation and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the environment. However, in the saline soils, the PAH biodegradation could be influenced by soil salts through altering the structures of microbial communities and physiological metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly threated by both soil salinity and PAH contamination, while the influence mechanism of soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation genes and soil enzyme activities. In order to explain the responses of soils and bacterial communities, analysis was conducted including soil properties, structures of bacterial community, PAH degradation genes and soil enzyme activities during a biodegradation process of PAHs in oilfield soils. The results showed that, though low soil salinity (1% NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity, the lower the bacterial community diversity, copy number of degradation gene and soil enzyme activity, which could be the reason for reductions of degradation rates in saline soils. Analysis of bacterial community structure showed that, the additions of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in high salt treatments where the halophilic genera dominant, such as Acinetobacter and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression of PAH degradation genes by soil salts, which meant the decrease of degradation microbes and should be the primary cause of reduction of PAH removal. The soil enzyme activities could be indicators for microorganisms when they are facing adverse environmental conditions.


2021 ◽  
Author(s):  
Rafael Boluda ◽  
Luis Roca Pérez ◽  
Joaquín Ramos Miras ◽  
José A. Rodríguez Martín ◽  
Jaume Bech Borras

<p>Mercury (Hg) is a metal potentially dangerous that can accumulate in soils, move to plants and cause significant ecotoxicological risks. The province of Valencia is the third in Spain and has a great agricultural, industrial and tourist vocation; it has an area of 10,763 km<sup>2</sup>, of which it devotes 272,978 ha to cultivation, most of which are irrigated soils. To the south of the city of Valencia, is the Albufera Natural Park (ZEPA area and Ramsar wetland) with 14,806 ha dedicated to rice cultivation. Pollution and burning of rice straw in rice paddies are serious problems. Therefore, the concentration of Hg in agricultural soils in the province of Valencia according to use, with an emphasis on rice paddy soils, and spatial distribution were determined; and the effects of rice straw burning on Hg accumulation on rice paddy soils was assessed. Systematic sampling was carried out throughout the agricultural area at an intensity of a grid of 8 x 8 km, in which samples composed of soil between 0 and 20 cm were collected in a total of 98 plots; and a simple random sampling in the case of rice paddies in 35 sites, distinguishing between plots where the incineration of rice straw was carried out and where it was not. The concentration of Hg was determined with a direct DMA-80 Milestone analyzer in the previously pulverized sample. The detection limit was 1.0 g kg<sup>-1</sup>, the recovery was 95.1% to 101.0% ± 4.0%. The analyses were performed in triplicate. A basic descriptive statistic (means, medians, deviations, and ANOVA) was performed. Samples were grouped according to land use. For geostatistic analysis and in order to obtain the map of the spatial distribution of the concentration of Hg in soils, the classical geostatistic technique was used by ordinary kriging. The concentration of Hg in the soils of the province of Valencia showed great variability. The soils of the rice paddies together with those dedicated to the cultivation of citrus and horticultural of the coastal plain, showed the highest levels of Hg, in contrast to the soils of the interior areas dedicated to dry crops (vineyards, olive, almond and fodder). Spatial analysis reflected a concentration gradient from west to east, suggesting that the Hg in the soils of the interior has a geochemical origin, while in the coast soils it is of anthropic origin. On the other hand, it was observed that the burning of rice straw increased the Hg concentration in rice paddy soils. This research is the first information on the distribution of Hg in the soils of the province of Valencia and a contribution that can help weigh the effects of open burning of rice straw on Valencian rice paddies.</p>


2011 ◽  
Vol 186 (2-3) ◽  
pp. 1801-1807 ◽  
Author(s):  
Jang-Hung Huang ◽  
Shen-Huei Hsu ◽  
Shan-Li Wang

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanqing Deng ◽  
Taobing Yu ◽  
Zhen Zeng ◽  
Umair Ashraf ◽  
Qihan Shi ◽  
...  

Silicon (Si) deficiency, caused by acidic soil and rainy climate, is a major constraint for sugarcane production in southern China. Si application generally improves sugarcane growth; however, there are few studies on the relationships between enhanced plant growth, changes in rhizosphere soil, and bacterial communities. A field experiment was conducted to measure sugarcane agronomic traits, plant nutrient contents, rhizosphere soil enzyme activities and chemical properties, and the rhizosphere bacterial community diversity and structure of three predominant sugarcane varieties under two Si treatments, i.e., 0 and 200 kg of silicon dioxide (SiO2) ha−1 regarded as Si0 and Si200, respectively. Results showed that Si application substantially improved the sugarcane stalk fresh weight and Si, phosphorus (P), and potassium (K) contents comparing to Si0, and had an obvious impact on rhizosphere soil pH, available Si (ASi), available P (AP), available K (AK), total phosphorus (TP), and the activity of acid phosphatase. Furthermore, the relative abundances of Proteobacteria showed a remarkable increase in Si200, which may be the dominant group in sugarcane growth under Si application. Interestingly, the AP was noticed as a major factor that caused bacterial community structure differences between the two Si treatments according to canonical correspondence analysis (CCA). In addition, the association network analysis indicated that Si application enriched the rhizosphere bacterial network, which could be beneficial to sugarcane growth. Overall, appropriate Si application, i.e., 200 kg SiO2 ha−1 promoted sugarcane growth, changed rhizosphere soil enzyme activities and chemical properties, and bacterial community structures.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1452
Author(s):  
Abdoulaye Amadou ◽  
Alin Song ◽  
Zhi-Xi Tang ◽  
Yanling Li ◽  
En-Zhao Wang ◽  
...  

Bacterial community and soil enzymatic activity depend on soil and management conditions. Fertilization is an important approach to maintain and enhance enzyme activities and microbial community diversity. Although the effects of fertilizer application on soil microbial community and related parameters are explored, the effects on the soil microbiome associated with those of wheat plant organs, including those associated with roots and spikelets, are not well-known. Therefore, in this study, by using a sequencing approach, we assessed the effects of inorganic fertilizers, manure, and biochar on soil enzyme activities, bacterial community diversity and structure in the bulk soil, rhizosphere, roots, and spikelet of wheat (Triticumaestivum L.). For this, different treatment biochar (BC), manure (OM), low mineral fertilizer (HL), high mineral fertilizer (HF), and no fertilizer (FO) were used for the enzyme activities and bacterial community structure diversity tested. The result showed that organic amendment application increased total nitrogen, soil available phosphorus, and potassium compared to inorganic fertilizer and control, especially in the rhizosphere. Enzyme activities were generally higher in the rhizosphere than in the bulk soil and organic amendments increased activities of acid phosphatase (AcP), β-1,4-N-acetyl-glucosaminidase (NAG), and phenol oxydase (PhOx). Compared with soil and rhizosphere, bacterial diversity was lower in wheat roots and evenlower in the spikelet. From the bulk soil, rhizosphere to roots, the fertilization regimes maintained bacterial diversity, while organic amendment increased bacterial diversity in the spikelet. Fertilization regimes significantly influenced the relative abundances of 74 genera across 12 phyla in the four compartments. Interestingly, the relative abundance of Proteobacteria (Citrobacter, Pantoea, Pseudomonas, and unclassified Enterobacteriaceae) in the spikelet was decreased by increasing inorganic fertilizer and further by manure and biochar, whereas those of Actinobacteria (Microbacterium and an unclassified Microbacteriaceae) and Bacteroidetes (Hymenobacter and Chitinophagaceae) were increased. The results suggest that potential bacterial functions of both roots and above-ground parts of wheat would be changed by different organic amendment regimes (manure and biochar).


Sign in / Sign up

Export Citation Format

Share Document