Soil enzyme activities under the impact of long-term pollution from mining-metallurgical copper production

2020 ◽  
Vol 101 ◽  
pp. 103232
Author(s):  
Jelena S. Milosavljevic ◽  
Snezana M. Serbula ◽  
Djuro M. Cokesa ◽  
Dragan B. Milanovic ◽  
Ana A. Radojevic ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1153
Author(s):  
Yage Li ◽  
Chun Han ◽  
Shan Sun ◽  
Changming Zhao

Long-term afforestation strongly changes the soil’s physicochemical and biological properties. However, the underlying mechanism of different tree species driving change in soil nutrients is still unclear in the long-term dryland plantations of the Loess Plateau, China. In this study, samples of surface soil (0–20 cm) and woody litter were collected from five plantations (≥50 years) of Caragana korshinskii, Armeniaca sibirica, Populus hopeiensis, Platycladus orientalis, and Pinus tabulaeformis and a natural grassland, and tested for the carbon, nitrogen, phosphorus, and potassium contents, as well as the soil sucrase (SC), urease (UE), and alkaline phosphorus (ALP) activities. We found that soil nutrients, enzyme activities, and the litter’s chemical properties obviously varied among five tree species. C. korshinskii significantly increased the soil’s TC, organic carbon (OC), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) by 28.42%, 56.08%, 57.41%, 107.25%, and 10.29%, respectively, and also increased the soil’s available phosphorus (AP) by 18.56%; while P. orientalis significantly decreased soil TN (38.89%), TP (30.58%), AP (76.39%), TK (8.25%), and AK (8.33%), and also decreased soil OC (18.01%) and AN (1.09%), compared with those in grassland. The C. korshinskii plantation had higher quality litter and soil enzyme activities than the P. orientalis plantation. Moreover, 62.2% of the total variation in soil nutrients was explained by the litter’s chemical properties and soil enzyme activities, and the litter phosphorus (LP) and soil ALP had a more significant and positive impact on soil nutrients. Therefore, tree species, LP, and soil ALP were key factors driving soil nutrient succession in dryland plantations. The significantly positive nitrogen–phosphorus coupling relationship in the “litter–enzyme–soil” system revealed that the improving nitrogen level promoted the phosphorus cycle of the plantation ecosystem. Our results suggest that leguminous tree species are more suitable for dryland afforestation through the regulation of litter quality and soil enzyme activities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Parul Chaudhary ◽  
Anuj Chaudhary ◽  
Heena Parveen ◽  
Alka Rani ◽  
Govind Kumar ◽  
...  

Abstract Background Since the World’s population is increasing, it’s critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. “Nanophos” is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. Results Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. Conclusion The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.


2004 ◽  
Vol 35 (4) ◽  
pp. 300-306 ◽  
Author(s):  
Elcio Liborio Balota ◽  
Miriam Kanashiro ◽  
Arnaldo Colozzi Filho ◽  
Diva Souza Andrade ◽  
Richard Peter Dick

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Obinna Ezeokoli ◽  
Valter Nuaila ◽  
Chinedu Obieze ◽  
Belo Muetanene ◽  
Irene Fraga ◽  
...  

Soil ecosystem perturbation due to agronomic practices can negatively impact soil productivity by altering the diversity and function of soil health determinants. Currently, the influence of rice cultivation and off-season periods on the dynamics of soil health determinants is unclear. Therefore, soil enzyme activities (EAs) and bacterial community compositions in rice-cultivated fields at postharvest (PH) and after a 5-month off-season period (5mR), and fallow-fields (5-years-fallow, 5YF; 10-years-fallow, 10YF and/or one-year-fallow, 1YF) were assessed in two agroecological regions of Mozambique. EAs were mostly higher in fallow fields than in PH, with significant (p < 0.05) differences detected for β-glucosidase and acid phosphatase activities. Only β-glucosidase activity was significantly (p < 0.05) different between PH and 5mR, suggesting that β-glucosidase is responsive in the short-term. Bacterial diversity was highest in rice-cultivated soil and correlated with NO3−, NH4+ and electrical conductivity. Differentially abundant genera, such as Agromyces, Bacillus, Desulfuromonas, Gaiella, Lysobacter, Micromonospora, Norcadiodes, Rubrobacter, Solirubrobacter and Sphingomonas were mostly associated with fallow and 5mR fields, suggesting either negative effects of rice cultivation or the fallow period aided their recovery. Overall, rice cultivation and chemical parameters influenced certain EAs and shaped bacterial communities. Furthermore, the 5-month off-season period facilitates nutrient recovery and proliferation of plant-growth-promoting bacteria.


Sign in / Sign up

Export Citation Format

Share Document