scholarly journals Electro-catalytic scission of carbon–iodine bonds. Building of SAMs at gold surfaces through long chain primary radical adsorption

2014 ◽  
Vol 38 ◽  
pp. 65-67 ◽  
Author(s):  
Jacques Simonet ◽  
Viatcheslav Jouikov
1998 ◽  
Vol 202 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Martina Hirayama ◽  
Walter R. Caseri ◽  
Ulrich W. Suter
Keyword(s):  

1996 ◽  
Vol 74 (5) ◽  
pp. 677-688 ◽  
Author(s):  
Reno F. Debono ◽  
Glenn D. Loucks ◽  
Deborah Della Manna ◽  
Ulrich J. Krull

Gold surfaces coated with monolayers of alkyl thiols are significant in the field of biosensors and chromatography. There is a general concern about the quality of coatings in terms of surface density and voids. The self-assembly of the short-chain hexane (C6) thiol and long-chain dodecane (C12) and hexadecane (C16) thiols to polycrystalline gold surfaces has been investigated in situ and in real time using surface plasmon resonance (SPR) spectroscopy and surface plasmon microscopy (SPM). The self-assembly was followed based on observed changes in reflectivity at a fixed angle of incidence as a function of time. Our results indicate that the data for hexane, dodecane, and hexadecane thiol adsorption to gold surfaces were best fit by a two-step process rather than a one-step process. The mechanism may involve fast adsorption to the surface to give 80% (C12, C16) or 50% (C6) coverage followed by a slow (100-fold slower) "rearrangement" of the adsorbed thiol. SPM shows these surfaces to be smooth and homogenous at a 4 μm scale. An understanding of the process of rearrangement could lead to control of the quality of coatings for analytical applications. Key words: surface plasmon, alkyl thiols, gold, monolayer, kinetics, ellipsometry, microscopy.


Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


Author(s):  
J.T. Fourie

Contamination in electron microscopes can be a serious problem in STEM or in situations where a number of high resolution micrographs are required of the same area in TEM. In modern instruments the environment around the specimen can be made free of the hydrocarbon molecules, which are responsible for contamination, by means of either ultra-high vacuum or cryo-pumping techniques. However, these techniques are not effective against hydrocarbon molecules adsorbed on the specimen surface before or during its introduction into the microscope. The present paper is concerned with a theory of how certain physical parameters can influence the surface diffusion of these adsorbed molecules into the electron beam where they are deposited in the form of long chain carbon compounds by interaction with the primary electrons.


2021 ◽  
Author(s):  
Yali Wei ◽  
Yan Meng ◽  
Na Li ◽  
Qian Wang ◽  
Liyong Chen

The purpose of the systematic review and meta-analysis was to determine if low-ratio n-6/n-3 long-chain polyunsaturated fatty acid (PUFA) supplementation affects serum inflammation markers based on current studies.


2005 ◽  
Vol 72 ◽  
pp. 177-188 ◽  
Author(s):  
Félix M. Goñi ◽  
F-Xabier Contreras ◽  
L-Ruth Montes ◽  
Jesús Sot ◽  
Alicia Alonso

In the past decade, the long-neglected ceramides (N-acylsphingosines) have become one of the most attractive lipid molecules in molecular cell biology, because of their involvement in essential structures (stratum corneum) and processes (cell signalling). Most natural ceramides have a long (16-24 C atoms) N-acyl chain, but short N-acyl chain ceramides (two to six C atoms) also exist in Nature, apart from being extensively used in experimentation, because they can be dispersed easily in water. Long-chain ceramides are among the most hydrophobic molecules in Nature, they are totally insoluble in water and they hardly mix with phospholipids in membranes, giving rise to ceramide-enriched domains. In situ enzymic generation, or external addition, of long-chain ceramides in membranes has at least three important effects: (i) the lipid monolayer tendency to adopt a negative curvature, e.g. through a transition to an inverted hexagonal structure, is increased, (ii) bilayer permeability to aqueous solutes is notoriously enhanced, and (iii) transbilayer (flip-flop) lipid motion is promoted. Short-chain ceramides mix much better with phospholipids, promote a positive curvature in lipid monolayers, and their capacities to increase bilayer permeability or transbilayer motion are very low or non-existent.


Sign in / Sign up

Export Citation Format

Share Document