Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal

2018 ◽  
Vol 275 ◽  
pp. 8-17 ◽  
Author(s):  
Satish S. Rikame ◽  
Alka A. Mungray ◽  
Arvind K. Mungray
2016 ◽  
Vol 855 ◽  
pp. 91-97
Author(s):  
Piyarut Moonsri ◽  
Wilaiporn Pongpian ◽  
Prayak Juantrong

This research studied the electricity production from organic wastes fermentation by microbial fuel cell by using a single chamber microbial fuel cell (SCMFC). Two sizes (1 L and 10 L) of simple SCMFC were fabricated by using a cylindrical plastic tank which anode compartment and cathode compartment separated by plastic plate with hole and covered with cotton fabric. The anode electrode contacted with organic matter and microorganisms where anaerobic reaction occurred to generate electron and proton. The electrons transferred through an external circuit while the protons diffused through the solution to the cathode electrode for reducing oxygen to water. From the study of the effect of different electrode types (carbon graphite rod, zinc metal, and copper metal) to the electricity generation using the SCMFC size 1 L in fermentation with synthetic sweetness solution (22%Brix) and the effective microorganism (EM) for 36 hrs, it found that the fuel cell which used copper metal as electrode produced electricity increasing over the times and has more efficient than the other electrode types. The study of electricity generation from organic waste fermentation by using the SCMFC size 10 L and using copper metal as electrode, the results showed that the fermentation of pineapple waste produced the current density, potential density, and power density higher than the fermentation of bananas and the fermentation of food garbage with EM. An optimal period of time for the production of electricity from this microbial fuel cell is the first five days of fermentation that the cells has voltage »500 mV, the current density 25.52 mA m-2, potential density 104.69 V m-2 and power density 12.59 mW m-2, and then decline over time five days (120 hrs). Moreover the bio-liquid fertilizer and the residues from the fermentation can be further used in agricultural because of the nutrient content (N, P, K), organic carbon and organic material contents available.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Fatin Syahirah Fadzli ◽  
Showkat Ahmad Bhawani ◽  
Rania Edrees Adam Mohammad

A new bioelectrochemical approach based on metabolic activities inoculated bacteria, and the microbial fuel cell (MFC) acts as biocatalysts for the natural conversion to energy of organic substrates. Among several factors, the organic substrate is the most critical challenge in MFC, which requires long-term stability. The utilization of unstable organic substrate directly affects the MFC performance, such as low energy generation. Similarly, the interaction and effect of the electrode with organic substrate are well discussed. The electrode-bacterial interaction is also another aspect after organic substrate in order to ensure the MFC performance. The conclusion is based on this literature view; the electrode content is also a significant challenge for MFCs with organic substrates in realistic applications. The current review discusses several commercial aspects of MFCs and their potential prospects. A durable organic substrate with an efficient electron transfer medium (anode electrode) is the modern necessity for this approach.


Author(s):  
Nicholas Siefert ◽  
Gautam Ashok

Generating electricity at wastewater treatment plants is a promising near-term application of fuel cell systems. The scale of most wastewater treatment plants is such that there is a good match with the scale of today’s fuel cell systems. This paper presents an exergy analysis and an economic comparison between two fuel cell systems that generate electricity at a wastewater treatment plant. The first process integrates an anaerobic digester (AD) with a solid oxide fuel cell (SOFC). The SOFC was modeled using publicly-available data from the tests on the Rolls-Royce pressurized SOFC. The second process has the wastewater sent directly to a microbial fuel cell (MFC). An MFC is an electrochemical cell in which bacteria convert acetate, sugars and/or other chemicals into protons, electrons and carbon dioxide at the anode electrode. The MFC was modeled as a PEM fuel cell as used for vehicle applications, but with a few changes: (a) anaerobic bacteria, such as geobacter, grow directly on the surface of the anode electrode, (b) there is no anode gas diffusion layer (GDL), (c) iron pyrophyrin, rather than platinum, is used as the catalyst material on the anode, in addition to the bacteria, and (d) the Nafion electrolyte is replaced with a bipolar membrane in order to minimize the transfer of non-proton cations, such as Na+, from the anode to the cathode. The rest of the equipment in the MFC is the same as those in commercial vehicle PEM fuel cells in order to use recent DOE cost estimates for PEM fuel cell systems. In both cases, we generated V-i curves of SOFC and MFC-PEM systems from data available on a) PEM & SOFC electrolyte conductivity and b) anode and cathode exchange current densities, including the effect of platinum levels on the cathode exchange current density of PEM fuel cells. A full exergy analysis was conducted for both systems modeled. The power per inlet exergy will be presented as a function of the current density and the pressure of the fuel cell. Using various Department of Eneregy (DOE) cost estimates for fuel cell systems, we perform parametric studies for both the MFC and AD-SOFC systems in order to maximize the internal rate of return on investment (IRR). In the MFC case, we varied the platinum loading on the cathode in order to maximize the IRR, and in the AD-SOFC case, we varied the current density of the SOFC in order to maximize the IRR. Finally, we compare the IRR of the two systems modeled above with the IRR of an anaerobic digester integrated with a piston engine capable of operating on biogas, such as the GE Jenbacher. Using an electricity sale price of $80/MWh, the IRR of the AD-SOFC, the microbial fuel cell and the AD-piston engine were 9%/yr, 10%/yr and 2%/yr, respectively. This economic analysis suggests that further experimental research should be conducted on both the microbial fuel cell and the pressurized SOFC because both systems were able to generate attractive values of IRR at an electricity sale price close to the average industrial price of electricity in the US.


2013 ◽  
Vol 404 ◽  
pp. 371-376 ◽  
Author(s):  
Ergin Taskan ◽  
Halil Hasar ◽  
Bestamin Ozkaya

Microbial fuel cell (MFC) provides the generation of electricity as bacteria on anode electrode oxidize organic content present in wastewater. This study presents simultaneously the electricity generation from two different synthetic wastewater mixtures using a new electrode in both anode and cathode compartments. Results showed that power output increased excessively in the case of Ti-TiO2 electrode. MFC reactors were mainly dominated by Geobacter, Shewanella, Pseudomonas and Clostridium species. The molecular results also demonstrated that Ti-TiO2 electrode is biocompatibility and able to be used in MFC because these species are electricity producing bacteria.


2014 ◽  
Vol 36 (11) ◽  
pp. 753-757 ◽  
Author(s):  
Jae Kyung Jang ◽  
Kyung Min Kim ◽  
SungAh Byun ◽  
Young Sun Ryou ◽  
In Seop Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document