scholarly journals Operation strategy and energy-saving of the solar lighting/heating system through spectral splitting

Author(s):  
Chao Shen ◽  
Kaijie Zheng ◽  
Changyun Ruan ◽  
Guoquan Lv ◽  
Mahroo Eftekhari
Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2013 ◽  
Vol 7 (4) ◽  
pp. 28-33
Author(s):  
Monika Pawlita

Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.


Author(s):  
Xinwei Zhou ◽  
Junqi Yu ◽  
Wanhu Zhang ◽  
Anjun Zhao ◽  
Min Zhou

Reasonable distribution of cooling load between chiller and ice tank is the key to realize the economical and energy-saving operation of ice-storage air-conditioning (ISAC) system. A multi-objective optimization model based on improved firefly algorithm (IFA) was established in this study to fully exploit the energy-saving potential and economic benefit of the ISAC system. The proposed model took the partial load rate of each chiller and the cooling ratio of the ice tank as optimization variables, and the lowest energy consumption loss rate and the lowest operating cost of the ISAC system were calculated. Chaotic logic self-mapping was used to initialize population to avoid falling into local optimum, and Cauchy mutation was used to increase the population’s diversity to improve the algorithm’s global search ability. The experimental results show that compared with the operation strategy based on constant proportion, particle swarm optimization (PSO) algorithm, and firefly algorithm (FA), the optimal operation strategy based on IFA can achieve more significant energy-saving and economic benefits. Meanwhile, the convergence accuracy and stability of the algorithm are significantly improved. Practical application: The optimized operation strategy of the ice-storage air-conditioning system can reduce energy loss and operating costs. The traditional operation strategies have the problems of low optimization precision and poor optimization effect. Therefore, this study presents an optimal operation strategy based on IFA. The convergence accuracy and stability of the algorithm are increased after the algorithm is improved. The operation strategy can get the maximum energy-saving effect and economic benefit of the ISAC system.


2019 ◽  
Vol 111 ◽  
pp. 03006
Author(s):  
Yue Zhang ◽  
Xiaofeng Li ◽  
Bin Wang ◽  
Zheren Song

This paper mainly studied the operation strategy for subway VAC system during transition seasons. Two modes including WF-AC (Whole Fresh air- Air Conditioning) mode and B/E-V (Back/Exhausted fan-Ventilation) mode were selected based on energy saving principle. In order to decide the optimal operation mode, the calculation method of “switching temperature” was proposed. The main influencing factors of the switching condition include indoor cooling load, COP of the chilled-water-system, temperature difference of the supply air, efficiency of fan and the resistance of air duct. Also, the transfer temperature diagram is provided based on proposed calculation method, which is suitable for engineering use. The aim of this study is to regulate the operation mode and to promote energy saving in subway station.


Sign in / Sign up

Export Citation Format

Share Document