Policy options towards an energy efficient residential building stock in the EU-27

2010 ◽  
Vol 42 (6) ◽  
pp. 791-798 ◽  
Author(s):  
Andreas Uihlein ◽  
Peter Eder
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 449
Author(s):  
Hung Q. Do ◽  
Mark B. Luther ◽  
Mehdi Amirkhani ◽  
Zheng Wang ◽  
Igor Martek

In order to achieve Australia’s greenhouse gas emissions reduction targets, a majority of the existing residential building stock in Australia will require retrofitting in favour of energy-efficient solutions. This paper considers retrofitting for conditioning to be one of the most straightforward and offers the greatest potential to deliver significant comfort and energy-saving results. Radiant conditioning systems are not new, yet some game-changing innovations have taken place over the last decade that may require an entire paradigm shift in the manner we condition our buildings. The reiteration of the principle ‘thermally active systems’ suggests that our buildings need to accommodate these systems into the fabric of building components. However, extremely few products and/or innovative solutions for doing such seem to be provided by the industry. We seem incompetent with solutions that are not costing the Earth, insulating, lightweight, and offering an instant response time to conditioning. We still have the concept embedded in our minds that radiative systems consist of heavy ‘combat’ construction with time lags of a day or two and that they are very costly to implement, especially if we are to retrofit a project. The purpose of this paper is to rectify and change our understanding of radiant systems, namely through a review of the existing technology and its recent advancements. It intends to introduce the fact that radiant systems can become highly reactive, responsive, and thermally dynamic conditioning systems. Lightweight radiant systems can be 40% more energy-efficient than common air conditioners and can respond in less than 15 min rather than in the hours required of heavy radiant systems. Thus, an insulated, lightweight radiant system is ideal for retrofitting residential buildings. Furthermore, this paper supports and introduces various systems suited to retrofitting a residential building with hydronic radiant systems.


2019 ◽  
Vol 29 (4) ◽  
pp. 198-217
Author(s):  
Lukas Schwan ◽  
Jakob Hahn ◽  
Michael Barton ◽  
Ronja Anders ◽  
Christian Schweigler

Abstract The building sector offers the largest potential for a significant reduction of greenhouse gas emissions. Based on own preliminary investigations for the State of Bavaria, a complete renovation of the building envelope of the current residential building stock would result in a reduced demand for final thermal energy for space heating and domestic hot water by about 70 %. The present study analyzes different existing reference buildings and reference methods. Based on a general literature review, specific criteria will be developed for reference models to represent the thermal energy consumption of the residential building stock for the regional domain under investigation. The objective is to represent the building stock with a limited amount of reference buildings. The method for the development of a reference building will be shown exemplarily for one category.


2021 ◽  
Vol 13 (8) ◽  
pp. 4099
Author(s):  
Ann-Kristin Mühlbach ◽  
Olaf Mumm ◽  
Ryan Zeringue ◽  
Oskars Redbergs ◽  
Elisabeth Endres ◽  
...  

The METAPOLIS as the polycentric network of urban–rural settlement is undergoing constant transformation and urbanization processes. In particular, the associated imbalance of the shrinkage and growth of different settlement types in relative geographical proximity causes negative effects, such as urban sprawl and the divergence of urban–rural lifestyles with their related resource, land and energy consumption. Implicitly related to these developments, national and global sustainable development goals for the building sector lead to the question of how a region can be assessed without detailed research and surveys to identify critical areas with high potential for sustainable development. In this study, the TOPOI method is used. It classifies settlement units and their interconnections along the urban–rural gradient, in order to quantify and assess the land-uptake and global warming potential driven by residential developments. Applying standard planning parameters in combination with key data from a comprehensive life cycle assessment of the residential building stock, a detailed understanding of different settlement types and their associated resource and energy consumption is achieved.


2020 ◽  
Vol 10 (17) ◽  
pp. 5741 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce

Tourism represents an important economic driver in Italy, being responsible for approximately 13.2% of the total GDP (a value higher than the reference European average) and for nearly 10% of the regional GDP. Among the touristic sectors, the agritourist ones show a persistent growth, experiencing in 2019 a 6.7 point percentage improvement compared to the 2017 figures. Given this situation, the transition towards a low-carbon path, affecting the building sector for some time, should also involve agritourist buildings, through the release of EU directives, member state laws, and technical rules. On the other hand, agritourism sites could be awarded the Community EU Ecolabel. Unfortunately, awarding the EU environmental excellence brand implies the availability of several data on building energy behavior that should then be managed by complex evaluation tools. To overcome this issue, the use of the simplified ARERA (Italian Regulatory Authority for Energy Networks and Environment) technical datasheets, issued to assess environmental improvements consequent to energy efficiency interventions in the urban residential building stock, is proposed. The application of this tool totally avoids using building computer-based simulation models, thus facilitating the preparation of the EU Ecolabel request documentation by agritourism owners. Being awarded the Community EU Ecolabel also implies approaching a net zero energy condition because of a lower energy consumption and a minor recourse to fossil fuels. For this purpose, an application of an easy graphical method, previously developed for residential and commercial buildings, which visually represents improvements achievable by a given agritourism when implementing energy efficiency measures, is presented.


2020 ◽  
Vol 12 (12) ◽  
pp. 5041
Author(s):  
Efstathios Kakkos ◽  
Felix Heisel ◽  
Dirk E. Hebel ◽  
Roland Hischier

Modern cities emerged as the main accumulator for primary and waste materials. Recovery of both types from buildings after demolition/disassembly creates a secondary material stream that could relieve pressure from primary resources. Urban mining represents this circular approach, and its application depends on redefining current construction practice. Through the life cycle assessment (LCA) methodology and assuming primary resources as step zero of urban mining, this study estimates the impacts and benefits of conventional versus a circular construction practice applied to various buildings with different parameters and the country-level environmental potential savings that could be achieved through this switch in construction practice—using the increase of the residential building stock in Switzerland between 2012 and 2016 as a case study and key values from the experimental unit “Urban Mining and Recycling”, designed by Werner Sobek with Dirk E. Hebel and Felix Heisel and installed inside the NEST (Next Evolution in Sustainable Building Technologies) research building on the Empa campus in Switzerland. The results exhibit lower total impacts (at least 16% in each examined impact category) at building level and resulting benefits (i.e., 68–117 kt CO2-Eq) at country level over five years, which can be further reduced/increased respectively by using existing or recycled components, instead of virgin materials.


Sign in / Sign up

Export Citation Format

Share Document