Summer thermal comfort in nursing homes in the Mediterranean climate

2020 ◽  
Vol 229 ◽  
pp. 110442 ◽  
Author(s):  
N. Forcada ◽  
M. Gangolells ◽  
M. Casals ◽  
B. Tejedor ◽  
M. Macarulla ◽  
...  
2021 ◽  
pp. 111475
Author(s):  
N. Forcada ◽  
M. Gangolells ◽  
M. Casals ◽  
B. Tejedor ◽  
M. Macarulla ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 473 ◽  
Author(s):  
Hardi K. Abdullah ◽  
Halil Z. Alibaba

Natural ventilation through window openings is an inexpensive and effective solution to bring fresh air into internal spaces and improve indoor environmental conditions. This study attempts to address the “indoor air quality–thermal comfort” dilemma of naturally ventilated office buildings in the Mediterranean climate through the effective use of early window design. An experimental method of computational modelling and simulation was applied. The assessments of indoor carbon dioxide (CO2) concentration and adaptive thermal comfort were performed using the British/European standard BS EN 15251:2007. The results indicate that when windows were opened, the first-floor zones were subjected to the highest CO2 levels, especially the north-facing window in the winter and the south-facing window in the summer. For a fully glazed wall, a 10% window opening could provide all the office hours inside category I of CO2 concentration. Such an achievement requires full and quarter window openings in the cases of 10% and 25% window-to-floor ratios (WFR), respectively. The findings of the European adaptive comfort showed that less than 50% of office hours appeared in category III with cross-ventilation. The concluding remarks and recommendations are presented.


2020 ◽  
pp. 165-179
Author(s):  
T Saroglou ◽  
T Theodosiou ◽  
I. A. Meir

Tall buildings around the world are increasing at an accelerating pace. However, this fast-pace development is not in tandem with today’s environmental considerations towards reducing high carbon emissions, mainly relating to the building sector (close to 50% of carbon dioxide (CO2) emissions). The vast scale and energy demands of tall buildings call for an in-depth study of this building typology towards improving energy efficiency. An important consideration for lowering energy demands is the configuration of the building envelope that acts as the mediator between indoor and outdoor conditions, according to the climate and microclimate of the building’s location. Current architectural practices of fully glazed curtain wall envelopes make this relationship problematic, by resulting in high-energy loads for achieving thermal comfort. Over the last few years, a step forward towards energy efficiency is the use of a double-skin façade (DSF). Its application, however, is lacking consideration of the specific climatic conditions that will essentially result in an energy efficient design. Previous research revealed that the most energy efficient DSF in the Mediterranean climate is with LowE glazing as the outside DSF layer. Further studies on DSF cavity width for a hot climate, were in favour of wider cavities, as these reduce the high cooling loads that are associated with this climate. Additionally, simulations of an office building in the Mediterranean climate, confirmed that cooling energy is also present during winter (airtight DSF), suggesting for a more active DSF envelope design throughout the year. A further study is then conducted through simulations, where the DSF design alternates between an open / closed DSF, and comparisons are made in relation to DSF width, building height above ground, outdoor environmental conditions and interior thermal comfort, for further improving the energy efficiency of tall building design.


2020 ◽  
Vol 12 (6) ◽  
pp. 2253
Author(s):  
Refaa Sokkar ◽  
Halil Z. Alibaba

Atria are added to buildings for their aesthetical, environmental, and economic benefits; the appropriate atrium design can enhance an atrium’s thermal performance and the adjacent spaces’ temperatures. However, inappropriate design decisions cause thermal discomfort and consequently, higher energy consumption. Since the Mediterranean climate has diverse climatic conditions around the year, a central atrium with a top-lit skylight is recommended, but during the summer period it can cause overheating, and the insertion of shading elements shrinks the lighting performance: thus, the atrium skylight design is supposed to improve thermal comfort without affecting the lighting level. This study investigated the improvement of thermal performance in the atrium building by the implementation of a double-skin skylight (DSS) to enhance the atrium thermal performance without shading. The research conducted computer simulations with Environmental Design Solutions (EDSL) Tas software sequentially. The study prepared various design strategies, and different proposals were tested and compared in terms of indoor temperatures, with reference to American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE-55). The implementation of DSS achieved an average of 77% comfort in working hours around the year with different opening percentages according to the outdoor conditions. Moreover, results show that changing the DSS glazing materials did not affect the thermal performance of the atrium.


2021 ◽  
Vol 13 (12) ◽  
pp. 6706
Author(s):  
Faezeh Bagheri Moghaddam ◽  
Josep Maria Fort Mir ◽  
Isidro Navarro Delgado ◽  
Ernesto Redondo Dominguez

The aim of this paper is to investigate the thermal performance of vertical gardens by comparing the thermal comfort of bare (glazed) and green façades in the Mediterranean climate. The proposal consists of applying a vegetation layer on a glazed façade that could control solar radiation and reduce indoor air temperatures. This study investigates the thermal performance of green façades of an office building in the Mediterranean climate. For this purpose, the Gas Natural Fenosa Office Building as a case study was simulated, that is located on a site next to the coastline in Barcelona. Dynamic building energy simulation was used to determine and assess indoor thermal conditions and, for this reason, the IES VE as a simulation tool has been utilized. Thermal comfort was assessed through the adaptive comfort approach and results were analyzed and presented in the terms of indoor comfort conditions during occupied hours. As a result, the article shows that applying a green façade as a vegetation layer caused a reduction in the internal and external façade surface temperatures, as well as the indoor air temperature of the workplace. Additionally, enhancing indoor comfort in summer is closely associated with reducing the external surface temperature. In winter, it also protects the exterior surface from the low temperature of the outside, and all of this greatly increases thermal comfort performance.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3313
Author(s):  
Juan Luis Aguirre ◽  
María Teresa Martín ◽  
Sergio González ◽  
Manuel Peinado

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


Sign in / Sign up

Export Citation Format

Share Document