Application of mesoporous catalysts over palm-oil biodiesel for adjusting fuel properties

2012 ◽  
Vol 53 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Cherng-Yuan Lin ◽  
Hung-Hui Cheng
2021 ◽  
Vol 749 (1) ◽  
pp. 012030
Author(s):  
N A Fathurrahman ◽  
C S Wibowo ◽  
S A Bethari ◽  
R Anggarani ◽  
L Aisyah ◽  
...  

2021 ◽  
Vol 1126 (1) ◽  
pp. 012074
Author(s):  
Nitin Dattatreya Kamitkar ◽  
Satishkumar ◽  
A N Basavaraju ◽  
Shashikant Kushnoore ◽  
A B Deepa ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 692
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


2021 ◽  
pp. 100020
Author(s):  
Dastan Nurmukan ◽  
Manh-Vu Tran ◽  
Yew Mun Hung ◽  
Gianfranco Scribano ◽  
Cheng Tung Chong

2021 ◽  
Author(s):  
Nur Allif Fathurrahman ◽  
Ahmad Syihan Auzani ◽  
Rizal Zaelani ◽  
Riesta Anggarani ◽  
Lies Aisyah ◽  
...  

2021 ◽  
Author(s):  
Joris Herz ◽  
Ana Meijide ◽  
Christian Stiegler ◽  
Bunyod Holmatov ◽  
Alexander Knohl ◽  
...  

<p>The global population growth and changes in human lifestyle and consumption patterns put immense pressure on the limited freshwater resources in the world. Aiming at sustainable use and equitable allocation of the water resources, it becomes crucial to know the water appropriation for the production of different commodities and consumer goods. These days, oil palm (<em>Elaeis guineensis</em>) is one of the highest-demanded crops around the globe since the oil of its fruits and kernel is widely used as biofuel and major ingredients in food and cosmetic industries. Given this massive demand, the areas under oil palm cultivation in the tropics have continuously been expanding in the last decades, particularly in Indonesia. With the oil palm boom, not only biodiversity loss, and carbon dioxide emissions from deforestation have been increasing, but also the consumptions of blue and green water resources are of concern. </p><p>In this ongoing research, the concept of water footprint (WF) is employed to quantify the green and blue water use of oil palm production in the Bajubang district, Batanghari regency, Jambi province, Sumatra, Indonesia. This is one of the first studies that uses field-measured data of evapotranspiration (ET) from oil palm plantations in different growth stages over seven years for the purpose of WF assessment, compared to the available literature where ET was estimated using modelling approaches. The multi-year measurements were conducted using the eddy covariance technique, which continuously measures water vapor (H<sub>2</sub>O) fluxes at the ecosystem level over the plantation. Based on these measurements, specifically, the WF assessment is performed on a product basis during the plantation life cycle, per area and time unit, for the oil palm fruit yield and oil palm derived products (palm oil, palm-oil biodiesel). Besides the crop water consumption at the plantation (i.e. ET) as the core element, other water consumptions in the products’ processing chain are included in the WF assessment. Preliminary results indicate a WF of 2440 m<sup>3</sup> t<sup>-1</sup> for palm oil and 65 m<sup>3</sup> GJ<sup>-1</sup> for palm-oil biodiesel. This is about 50% lower than the global average estimates. Local WF account of oil palm products has a critical contribution to product transparency while being useful for comparative purposes. Contrasting the WFs of products serving the same function (e.g., palm oil biodiesel, soybean biodiesel) is of essential importance, aiming at conscious product choices in a world of freshwater scarcity.</p><p>Keywords: water footprint, oil palm, palm oil, Indonesia, eddy covariance, evapotranspiration</p>


Sign in / Sign up

Export Citation Format

Share Document