Financial assessment, performance and emission analysis of Moringa oleifera and Jatropha curcas methyl ester fuel blends in a single-cylinder diesel engine

2020 ◽  
Vol 224 ◽  
pp. 113362 ◽  
Author(s):  
Upendra Rajak ◽  
Prem Kumar Chaurasiya ◽  
Prerana Nashine ◽  
Manoj Verma ◽  
Thirupathi Reddy Kota ◽  
...  
2014 ◽  
Vol 65 ◽  
pp. 304-310 ◽  
Author(s):  
Md. Mofijur Rahman ◽  
Masjuki Hj. Hassan ◽  
Md. Abul Kalam ◽  
Abdelaziz Emad Atabani ◽  
Liaquat Ali Memon ◽  
...  

Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


2021 ◽  
Author(s):  
Tikendra Nath Verma ◽  
Abhishek Dasore ◽  
Pankaj Shrivastava ◽  
Ümit Ağbulut ◽  
Suat Sarıdemir ◽  
...  

Abstract In this study, exergy, energy, performance and emission analysis were investigated for the repurpose used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP) and petroleum diesel fuel (PDF) fueled compression ignition engine under various engine loads. In this study, 20% of each biodiesel was tested in single cylinder, four stroke, diesel engine, given that open literature shows the potential use of biodiesel of up to 20% in a diesel engine without modification. The diesel engine was used to investigate their performance, combustion and emission characteristics of diesel-repurpose used cooking oil, Jatropha curcas, and Pongamia Pinnata fuel samples at different compression ratios and load condition. The results showed that thermal efficiency is higher with the PDF compared to DRUCO20, DJC20, DPP20 biodiesel blends. The exhaust gas temperature decreased and specific fuel consumption of the engine were increased by adding RUCO, Jatropha curcas, Pongamia Pinnata to petroleum diesel fuel. Engine ecological analysis showed that blended fuel reduces the average hydrocarbons (HC), carbon monoxide (CO) and NO X than petroleum diesel fuel. While DRUCO20 showed better performance and reduction in ecological analysis but higher ecological of CO 2 is comparable with DCJ20 and DPP20.


Author(s):  
Fatima Mohammed Ghanim ◽  
Ali Mohammed Hamdan Adam ◽  
Hazir Farouk

Abstract: There is growing interest to study the effect of blending various oxygenated additives with diesel or biodiesel fuel on engine performance and emission characteristics. This study aims to analyze the performance and exhaust emission of a four-stroke, four-cylinder diesel engine fueled with biodiesel-ethanol-diesel. Biodiesel was first produced from crude Jatropha oil, and then it was blended with ethanol and fossil diesel in different blend ratios (B10E10D80, B12.5E12.5D75, B15E15D70, B20E20D60 and B25E25D50). The engine performance and emission characteristics were studied at engine speeds ranging from 1200 to 2000 rpm. The results show that the brake specific fuel consumption increases while the brake power decreases as the percentage of biodiesel and ethanol increases in the blend. The exhaust emission analysis shows a reduction in CO2 emission and increase in NOx emission when the biodiesel -to- ethanol ratio increases in the blends, when compared with diesel as a reference fuel.


Author(s):  
V. Hariram ◽  
J. Godwin John ◽  
Subramanyeswara Rao ◽  
S. K. Baji Babavali ◽  
S. Muni Lokesh ◽  
...  

This study focuses on the conversion of chicken fat into chicken fat methyl ester (CFME) and its use in the diesel engine. Baseline fuel i.e., diesel and chicken fat biodiesel are the fuels tested to study their effect on the performance and emission characteristics of diesel engines. To enhance the performance and emission characteristics, ethanol up to 20% is added as an additive to the chicken fat biodiesel. The physiochemical properties revealed that the fuel blends properties are closer to the diesel fuel. The experimental investigations revealed that additive blended biodiesel enhanced the performance by reducing the brake-specific fuel consumption and increasing the brake thermal efficiency. Moreover, the emissions are considerably reduced by the additive blended chicken fat biodiesel. Therefore, chicken fat biodiesel can be considered as a substitute fuel to be used in the diesel engine without any modifications.


Sign in / Sign up

Export Citation Format

Share Document