Fault diagnosis model for photovoltaic array using a dual-channels convolutional neural network with a feature selection structure

2021 ◽  
Vol 248 ◽  
pp. 114777
Author(s):  
Xiaoyang Lu ◽  
Peijie Lin ◽  
Shuying Cheng ◽  
Gengfa Fang ◽  
Xiangjian He ◽  
...  
2019 ◽  
Vol 13 (3) ◽  
pp. 5689-5702
Author(s):  
N. Fathiah Waziralilah ◽  
Aminudin Abu ◽  
M. H. Lim ◽  
Lee Kee Quen ◽  
Ahmed Elfakarany

The vast impact on machinery that is rooted by bearing degradation thus pinpointing bearing fault diagnosis as indubitably very crucial. The research is innovated to diagnose the fault in bearing by implementing deep learning approach which is Convolutional Neural Network (CNN) that has superiority over image processing and pattern recognition. A novel model comprises of Gabor Transform and CNN is proposed whereby Gabor Transform is utilized in representing the raw vibration signals into its image representation. The CNN architecture is augmented for a better accuracy of the bearing fault diagnosis model. To date, the method combination has never been deployed in establishing fault diagnosis model. Plus, the usage of Gabor Transform in mechanical area especially in bearing fault diagnosis is meagrely reported. Scant researches in mechanical diagnosis are dedicated to work on the image representation of the vibration data whereas the CNN works better when fed by images input due to its unique strength of CNN in images processing and spatial awareness. At the end of the research, it is perceived that the proposed model comprises of Gabor Transform and CNN can diagnose the bearing faults with 100% accuracy and perform better than when CNN is fed with raw signals.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 112
Author(s):  
Zhenzhong Xu ◽  
Bang Chen ◽  
Shenghan Zhou ◽  
Wenbing Chang ◽  
Xinpeng Ji ◽  
...  

In the process of aircraft maintenance and support, a large amount of fault description text data is recorded. However, most of the existing fault diagnosis models are based on structured data, which means they are not suitable for unstructured data such as text. Therefore, a text-driven aircraft fault diagnosis model is proposed in this paper based on Word to Vector (Word2vec) and prior-knowledge Convolutional Neural Network (CNN). The fault text first enters Word2vec to perform text feature extraction, and the extracted text feature vectors are then input into the proposed prior-knowledge CNN to train the fault classifier. The prior-knowledge CNN introduces expert fault knowledge through Cloud Similarity Measurement (CSM) to improve the performance of the fault classifier. Validation experiments on five-year maintenance log data of a civil aircraft were carried out to successfully verify the effectiveness of the proposed model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Qian

With the advent of the era of big data and the rapid development of deep learning and other technologies, people can use complex neural network models to mine and extract key information in massive data with the support of powerful computing power. However, it also increases the complexity of heterogeneous network and greatly increases the difficulty of network maintenance and management. In order to solve the problem of network fault diagnosis, this paper first proposes an improved semisupervised inverse network fault diagnosis algorithm; the proposed algorithm effectively guarantees the convergence of generated against network model, makes full use of a large amount of trouble-free tag data, and obtains a good accuracy of fault diagnosis. Then, the diagnosis model is further optimized and the fault classification task is completed by the convolutional neural network, the discriminant function of the network is simplified, and the generation pair network is only responsible for generating fault samples. The simulation results also show that the fault diagnosis algorithm based on network generation and convolutional neural network achieves good fault diagnosis accuracy and saves the overhead of manually labeling a large number of data samples.


2021 ◽  
Author(s):  
Chen Yao ◽  
Xi Yueyun ◽  
Chen Jinwei ◽  
Zhang Huisheng

Abstract Gas turbine is widely used in aviation and energy industries. Gas path fault diagnosis is an important task for gas turbine operation and maintenance. With the development of information technology, especially deep learning methods, data-driven approaches for gas path diagnosis are developing rapidly in recent years. However, the mechanism of most data-driven models are difficult to explain, resulting in lacking of the credibility of the data-driven methods. In this paper, a novel explainable data-driven model for gas path fault diagnosis based on Convolutional Neural Network (CNN) using Local Interpretable Model-agnostic Explanations (LIME) method is proposed. The input matrix of CNN model is established by considering the mechanism information of gas turbine fault modes and their effects. The relationship between the measurement parameters and fault modes are considered to arrange the relative position in the input matrix. The key parameters which contributes to fault recognition can be achieved by LIME method, and the mechanism information is used to verify the fault diagnostic proceeding and improve the measurement sensor matrix arrangement. A double shaft gas turbine model is used to generate healthy and fault data including 12 typical faults to test the model. The accuracy and interpretability between the CNN diagnosis model built with prior mechanism knowledge and built by parameter correlation matrix are compared, whose accuracy are 96.34% and 89.46% respectively. The result indicates that CNN diagnosis model built with prior mechanism knowledge shows better accuracy and interpretability. This method can express the relevance of the failure mode and its high-correlation measurement parameters in the model, which can greatly improve the interpretability and application value.


2019 ◽  
Vol 196 ◽  
pp. 950-965 ◽  
Author(s):  
Xiaoyang Lu ◽  
Peijie Lin ◽  
Shuying Cheng ◽  
Yaohai Lin ◽  
Zhicong Chen ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Sign in / Sign up

Export Citation Format

Share Document