scholarly journals Design of serially connected district heating heat pumps utilising a geothermal heat source

Energy ◽  
2017 ◽  
Vol 137 ◽  
pp. 865-877 ◽  
Author(s):  
Jonas K. Jensen ◽  
Torben Ommen ◽  
Wiebke B. Markussen ◽  
Brian Elmegaard
2021 ◽  
Vol 288 ◽  
pp. 01089
Author(s):  
Alexei Sednin ◽  
Aliaksandr Mukhin ◽  
Boris Balakin

Future district heating systems need to be more flexible and move towards a carbon-neutral generation. Compression heat pumps are foreseen to be promising future tools for district heating systems in EU countries. The paper presents the simulation data or a vertical double-pipe geothermal heat exchanger with ethylene glycol-Al2O3 as a working fluid. To simulate the operation of the heat exchanger, the STAR-CCM + CFD application was used. It has been determined the optimal volume particle concentrations of nanofluid and enhance of heat exchanger performance.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3706 ◽  
Author(s):  
Ciapała ◽  
Jurasz ◽  
Kies

Geothermal heat is considered a sustainable energy source with significant global potential. Together with heat distribution networks, it can provide clean thermal energy to individual and commercial consumers. However, peaks in heat demand can require additional peaking sources at times. In this paper, we investigated how wind turbines can act as a peak energy source for a geothermal district heating system. We studied a model consisting of a geothermal heat source, a heat storage and wind power generator using historical weather data of Warsaw (Poland) and showed that wind power could increase the renewable share to supply a considerable heat demand compared to a geothermal heat source alone. The results indicate that wind power can be a suitable complement for a geothermal heat source to provide energy for heating. It is shown that a theoretical geo-wind-thermal storage based district heating network supplying 1000 m2, which requires 100 W/m2 at an outdoor temperature of −20 °C should have the following parameters: 4.8 MWh of thermal energy storage capacity, 45 kW of geothermal capacity and 5 kW of wind capacity. Such a system would ensure minimal wind curtailment, high utilization of geothermal source and high reliability of supply.


2020 ◽  
Vol 24 (3) ◽  
pp. 470-482
Author(s):  
Henrik Pieper ◽  
Torben Ommen ◽  
Brian Elmegaard ◽  
Anna Volkova ◽  
Wiebke Brix Markussen

AbstractLarge-scale heat pumps (HPs) and refrigeration plants are essential technologies to decarbonise the heating and cooling sector. District heating and cooling (DHC) can be supplied with low carbon footprint, if power generated from renewable energy sources is used. The simultaneous supply of DHC is often not considered in energy planning, nor the characteristics of the heat source and sink. Simplified approaches may not reveal the true potential of HPs and chillers. In this paper, different heat sources and sinks and their characteristics were considered for the simultaneous supply of DHC based on large-scale HPs and refrigeration plants. An optimization model was developed based on mixed-integer linear programming. The model is able to identify ideal production and storage capacities, heat sources and sinks based on realistic hourly operation profiles. By doing so, it is possible to identify the most economical or sustainable supply of DHC using electricity. The optimization model was applied to the Nordhavn area, a new development district of Copenhagen, Denmark. The results show that a combination of different heat sources and sinks is ideal for the case study. A HP that uses the district cooling network as a heat source to supply DHC was shown to be very efficient and economical. Groundwater and sewage water HPs were proposed for an economical supply of district heating. The Pareto frontier showed that a large reduction in annual CO2 emissions is possible for a relatively small increase in investments.


1999 ◽  
Vol 121 (4) ◽  
pp. 207-209 ◽  
Author(s):  
T. Hanegan ◽  
K. DenBraven

A geothermal heat pump (GHP) system with three ground coils was installed in a residence in northern Idaho with a portion of the ground heat exchanger wrapped around the residential septic tank. The septic coil provided a significant portion of the heating for the residence over the heating season. There was no evidence of the septic tank freezing up or failing to properly function. Utilizing a septic tank as a heat source for GHP systems is feasible design option if the septic tank is used on a full-time basis. However, the tank should be surrounded on all sides by a large amount of soil and/or insulated from the ground surface to ensure that ground temperatures near the tank remain warm during the winter.


2018 ◽  
Vol 10 (10) ◽  
pp. 3743 ◽  
Author(s):  
Youen Pericault ◽  
Erik Kärrman ◽  
Maria Viklander ◽  
Annelie Hedström

This study presents an integrated sustainability assessment of technical alternatives for water and heating services provision in suburban areas affected by a cold climate. Each alternative combines a drinking water supply, sewerage (gravity or low-pressure), pipe freeze protection (deep burial or shallow burial with heat tracing) and heating solution (district heating or geothermal heat pumps). An innovative freeze protection option was considered, in which low-temperature district heating (LTDH) is used to heat trace shallow sewer and water pipes. First, the performance of each alternative regarding seven sustainability criteria was evaluated on a projected residential area in Sweden using a systems analysis approach. A multi-criteria method was then applied to propose a sustainability ranking of the alternatives based on a set of weights obtained from local stakeholders. The alternative with a deep buried gravity sewer and geothermal heat pumps was found to have the highest sustainability score in the case study. In the sensitivity analysis, the integrated trench solution with a gravity sewer, innovative heat tracing and LTDH was found to potentially top the sustainability ranking if geothermal energy was used as the district heating source, or if the weight of the cost criterion increased from 24% to 64%. The study highlights the need for integrated decision-making between different utility providers as an integrated solution can represent sustainability gains.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


Energy ◽  
2021 ◽  
pp. 121202
Author(s):  
Kristina Lygnerud ◽  
Jonas Ottosson ◽  
Johan Kensby ◽  
Linnea Johansson

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2347
Author(s):  
Elżbieta Hałaj ◽  
Jarosław Kotyza ◽  
Marek Hajto ◽  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
...  

Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of the city is based on coal. The paper presents the conception of using the available renewable sources to integrate them into the city’s heating system, increasing the flexibility of the system and its decentralization. An innovative solution of the use of hybrid, modular heat pumps with power dependent on the needs of customers in a given location and combining them with geothermal waters and photovoltaics is presented. The potential of deep geothermal waters is based on two reservoirs built of carbonate rocks, namely Devonian and Upper Jurassic, which mainly consist of dolomite and limestone. The theoretical potential of water intake equal to the nominal heating capacity of a geothermal installation is estimated at 3.3 and 2.0 MW, respectively. Shallow geothermal energy potential varies within the city, reflecting the complex geological structure of the city. Apart from typical borehole heat exchangers (BHEs), the shallower water levels may represent a significant potential source for both heating and cooling by means of water heat pumps. For the heating network, it has been proposed to use modular heat pumps with hybrid sources, which will allow for the flexible development of the network in places previously unavailable or unprofitable. In the case of balancing production and demand, a photovoltaic installation can be an effective and sufficient source of electricity that will cover the annual electricity demand generated by the heat pump installation, when it is used for both heating and cooling. The alternating demand of facilities for heating and cooling energy, caused by changes in the seasons, suggests potential for using seasonal cold and heat storage.


Sign in / Sign up

Export Citation Format

Share Document