scholarly journals Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings

Energy ◽  
2020 ◽  
Vol 195 ◽  
pp. 116984 ◽  
Author(s):  
T. Kuczyński ◽  
A. Staszczuk
2018 ◽  
Vol 57 ◽  
pp. 04001 ◽  
Author(s):  
Albert Al Touma ◽  
Djamel Ouahrani

Al-Majlis is the living space in residential buildings of the Arabian Gulf, and is where occupants spend most of their time. For this reason, the human thermal comfort in this space is of extreme importance and is often compromised due to hot outdoor weather conditions. In contrast with many thermal discomfort mitigation methods in outdoor environments, which become unadvisable in indoor spaces, this study investigates the effect of adding PCM-enhanced tiles to portions of the indoor envelope on the occupant’s thermal comfort and the space cooling energy demand. A simulation model of a space with tight building envelope in Qatar was developed on EnergyPlus with and without the addition of PCM-enhanced tiles. The selected country is a representative location of the Arabian Gulf. Considering different occupant’s positions, the addition of the tiles with PCM on their back was found to moderate the mean radiant temperature, operative temperature, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), all of which signify an improvement in the human thermal comfort. Lastly, this change in the indoor envelope was found to save 3.3% of the space daily thermal cooling energy demand during one harsh summer representative day.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 215 ◽  
Author(s):  
Dodoo ◽  
Ayarkwa

This study presents an analysis of the impacts of climate change on thermal comfort and energy performance of residential buildings in Ghana, in sub-Saharan Africa, and explores mitigation as well as adaptation strategies to improve buildings’ performance under climate change conditions. The performances of the buildings are analyzed for both recent and projected future climates for the Greater Accra and Ashanti regions of Ghana, using the IDA-ICE dynamic simulation software, with climate data from the Meteonorm global climate database. The results suggest that climate change will significantly influence energy performance and indoor comfort conditions of buildings in Ghana. However, effective building design strategies could significantly improve buildings’ energy and indoor climate performances under both current and future climate conditions. The simulations show that the cooling energy demand of the analyzed building in the Greater Accra region is 113.9 kWh/m2 for the recent climate, and this increases by 31% and 50% for the projected climates for 2030 and 2050, respectively. For the analyzed building in the Ashanti region, the cooling energy demand is 104.4 kWh/m2 for the recent climate, and this increases by 6% and 15% for the 2030 and 2050 climates, respectively. Furthermore, indoor climate and comfort deteriorate under the climate change conditions, in contrast to the recent conditions.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7420
Author(s):  
Sangtae No

Countries around the world develop and use software based on the monthly calculation method of DIN V 18599:2007 and EN ISO13790 for building energy performance evaluations. The purpose of this study is to propose a method that can consider the effect of reducing cooling energy demand by hybrid ventilation outdoor air cooling in monthly calculation method-based software. For ventilation simulation, some representative floor plans and area types of Korean residential buildings were established through literature research. A number of dynamic energy simulations were performed for various building orientations, heights, and opening factors. Based on the simulation results, a nomograph that can calculate the cooling energy demand reduction factor according to hybrid ventilation that can be applied to the ventilation heat transfer coefficient is proposed.


2021 ◽  
Vol 13 (22) ◽  
pp. 12425
Author(s):  
Masoud Esfandiari ◽  
Suzaini Mohamed Zaid ◽  
Muhammad Azzam Ismail ◽  
Mohammad Reza Hafezi ◽  
Iman Asadi ◽  
...  

Energy consumption to cool an indoor environment is a substantial part of total energy end-use, particularly in a tropical climate with high energy demand for cooling. To improve energy efficiency, cooling systems can be optimized using a variety of neutral indoor temperatures to maintain a balance between an occupant’s thermal comfort and cooling energy demand. This explanatory study investigated the thermal quality and cooling energy demand of a Platinum-certified office building in the tropical climate of Malaysia. The investigation aimed to suggest a balance between occupant thermal comfort and cooling energy demand. The thermal investigation includes an objective field measurement that implements environmental equipment to monitor thermal quality and a subjective occupant’s thermal feedback using a questionnaire survey. To calculate cooling energy demand, the total equivalent temperature difference method (TETD) is applied. The results suggested an occupant’s cooling sensation of around 24 °C, with no significant difference concerning age and gender. Cooling load calculation indicated a 36% energy reduction by increasing air temperature to 26 °C, for occupants to feel thermally comfortable in a tropical climate. These findings contribute to improving sustainable energy policies, sustainable construction, and thermal comfort improvement for a tropical climate.


2019 ◽  
Vol 282 ◽  
pp. 02087 ◽  
Author(s):  
Steinar Grynning ◽  
Alessandro Nocente ◽  
Lars Gullbrekken ◽  
Kjell Skjeggerud

Previous studies demonstrated that the use of thermal mass in buildings can contribute to reduce the energy demand and improve the thermal comfort. The thermal mass effect strongly depends on the properties of the materials facing the internal environment. High thermal capacity and conductivity are vital to achieve the desired effects. Concrete have both and it is a common building material. However, scientifically sound experimental studies that quantify the effects in a controlled environment are scarce. The aim is to study the effects of thermal mass on indoor environment and comfort in a quantifiable way in an extensive experimental campaign where comparative measurements were carried out in The ZEB TestCell Laboratory in Trondheim, Norway. The facility consists of two identical real-weather exposed rooms the size of a single person office. One of the rooms was constructed with a 70 mm thick concrete flooring, the other with an 18 mm wood-flooring. Free-floating temperature propagations were measured in different natural ventilation scenarios. The results showed that peak temperatures were notably reduced in the test room with the concrete flooring. During the warmest periods, a temperature peak reduction of more than 10% was found compared to the wooden-floored room.


Sign in / Sign up

Export Citation Format

Share Document