Optimization of the areas of solar collectors and photovoltaic panels in liquid desiccant air-conditioning systems using solar energy in isolated low-latitude islands

Energy ◽  
2020 ◽  
Vol 198 ◽  
pp. 117324 ◽  
Author(s):  
Yingying Wang ◽  
Ying Fan ◽  
Dengjia Wang ◽  
Yanfeng Liu ◽  
Zhenghao Qiu ◽  
...  
2019 ◽  
Vol 11 (4) ◽  
pp. 1036 ◽  
Author(s):  
Beom-Jun Kim ◽  
Junseok Park ◽  
Jae-Weon Jeong

The main objective of this study is to investigate the indoor air quality enhancement performance of two different liquid desiccant and evaporative cooling-assisted air conditioning systems, such as the variable air volume (VAV) system with the desiccant-enhanced evaporative (DEVap) cooler, and the liquid desiccant system with an indirect and direct evaporative cooling-assisted 100% outdoor air system (LD-IDECOAS), compared with the conventional VAV system. The transient simulations of concentration variations of carbon dioxide (CO2), coarse particles, and fine particles (PM10 and PM2.5) in a model office space served by each system were performed using validated system models that were found in the literature. Based on the hourly thermal loads of the model space predicted by the TRNSYS 18 program, each air conditioning system was operated virtually using a commercial equation solver program (EES). The results indicated that the LD-IDECOAS provided the lowest annual indoor CO2 concentration among all the systems considered in this research, while the VAV system with DEVap cooler exceeded the threshold concentration (i.e., 1000 ppm) during the cooling season (i.e., July, August, and September). For the indoor particulate contaminant concentrations, both liquid desiccant and evaporative cooling-assisted air conditioning systems indicated lower indoor PM2.5 and PM10 concentrations compared with the reference system. The LD-IDECOAS and the VAV with a DEVap cooler demonstrated 33.3% and 23.5% lower annual accumulated indoor PM10 concentrations than the reference system, respectively. Similarly, the annual accumulated indoor PM2.5 concentration was reduced by 16% using the LD-IDECOAS and 17.1% using the VAV with DEVap cooler.


Author(s):  
Ion V. Ion ◽  
Gheorghe Ciocea ◽  
Florin Popescu

Abstract In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Su Liu ◽  
Jae-Weon Jeong

This study investigated the annual energy saving potential and system performance of two different evaporative cooling-based liquid desiccant and evaporative cooling-assisted air conditioning systems. One system used an indirect and direct evaporative cooler with a two-stage package to match the target supply air point. The other was equipped with a single-stage, packaged dew-point evaporative cooler that used a portion of the process air, which had been dehumidified in advance. Systems installed with the two evaporative coolers were compared to determine which one was more energy efficient and which one could provide better thermal comfort for building occupants in a given climate zone, using detailed simulation data. The detailed energy consumption data of these two systems were estimated using an engineering equation solver with each component model. The results showed that the liquid desiccant and dew-point evaporative-cooler-assisted 100% outdoor air system (LDEOAS) resulted in approximately 34% more annual primary energy consumption than that of the liquid desiccant and the indirect and direct evaporative-cooler-assisted 100% outdoor air system (LDIDECOAS). However, the LDEOAS could provide drier and cooler supply air, compared with the LDIDECOAS. In conclusion, LDIDECOAS has a higher energy saving potential than LDEOAS, with an acceptable level of thermal comfort.


2014 ◽  
Vol 554 ◽  
pp. 271-275 ◽  
Author(s):  
Islam Mazharul ◽  
Ruhul Amin Muhammad ◽  
Farid Nasir Ani

Saudi Arabia is endowed with abundant solar energy which is readily available from the sun. Solar energy is one of main renewable energy sources and it can be harnessed for an array of applications including heating, cooling and generation of electricity. Due to its hot climate and relatively high purchasing power capability of the general population, Saudi Arabia has a huge demand for air-conditioning (cooling) appliances. Currently these appliances are mainly powered by electricity generated by conventional sources using fossil fuels. Solar air-conditioning system is an emerging technology which relies on the sun for meeting the energy demand. One attractive feature of this system is that the high demand for space cooling by air-conditioning equipment coincides with the abundant availability of solar irradiation during the long summer months. Currently there are several types of solar air-conditioning systems, including the absorption, adsorption and desiccant systems. Each system has its merits and demerits. In this paper, the prospects of using absorption solar thermal air-conditioning systems for space cooling in Saudi Arabia are given.


2014 ◽  
Vol 672-674 ◽  
pp. 54-60 ◽  
Author(s):  
Ting Xiang Jin ◽  
Xiao Feng Xu

As coal, oil, natural gas and other non-renewable energy consumption and increasing energy demand, the utilization of solar energy as a new energy is greatly enhanced. In this work, a grid connected photovoltaic solar air conditioning system is designed, mainly comprised of solar panel, controller, inverter, room air conditioner and other parts. Air conditioning systems rely mainly on solar photovoltaic power; achieve the effect of energy conservation and environmental protection. The experimental result indicates that the system can achieve stable operation and the utilization of solar energy driving air conditioning system to save electricity. This air conditioning system is compared with the ordinary air conditioning system, SEER can increase 10.6 ~ 29.4%, HSPF can increase 6.25 ~ 18.5%.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1785
Author(s):  
Ranjan Pratap Singh ◽  
Ranadip K. Das

A rotary desiccant-based air-conditioning system is a heat-driven hybrid system which combines different technologies such as desiccant dehumidification, evaporative cooling, refrigeration, and regeneration. This system has an opportunity to utilize low-grade thermal energy obtained from the sun or other sources. In this paper, the basic principles and recent research developments related to rotary desiccant-based cooling systems are recalled and their applications and importance are summarized. It is shown that with novel system configurations and new desiccant materials, there is great potential for improving the performance and consistency of rotary desiccant systems; at the same time, the use of solar energy for regeneration purposes can minimize the operating cost to a great extent. Some examples are presented to demonstrate how rotary desiccant air conditioning can be a promising solution for replacing traditional vapor-compression air-conditioning systems. Recent advances and ongoing research related to solar-powered hybrid rotary desiccant cooling systems are also summarized. The hybrid systems make use of a vapor-compression system in order to have better operational flexibility. These systems, although they consume electrical energy, use solar energy as the principal source of energy, and hence, significant savings of premium energy can be obtained compared to conventional vapor-compression systems. However, further research and development are required in order to realize the sustainable operation of solar rotary desiccant air-conditioning systems, as solar energy is not steady. Reductions in capital cost and size, along with improvements in efficiency and reliability of the system is still needed for it to become a player in the market of air conditioning.


Sign in / Sign up

Export Citation Format

Share Document