scholarly journals Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation

Energy ◽  
2021 ◽  
pp. 122798
Author(s):  
Francesco Rovense ◽  
Miguel Ángel Reyes-Belmonte ◽  
Manuel Romero ◽  
José González-Aguilar
2021 ◽  
Vol 11 (4) ◽  
pp. 1776
Author(s):  
Young Seo Kim ◽  
Han Young Joo ◽  
Jae Wook Kim ◽  
So Yun Jeong ◽  
Joo Hyun Moon

This study identified the meteorological variables that significantly impact the power generation of a solar power plant in Samcheonpo, Korea. To this end, multiple regression models were developed to estimate the power generation of the solar power plant with changing weather conditions. The meteorological data for the regression models were the daily data from January 2011 to December 2019. The dependent variable was the daily power generation of the solar power plant in kWh, and the independent variables were the insolation intensity during daylight hours (MJ/m2), daylight time (h), average relative humidity (%), minimum relative humidity (%), and quantity of evaporation (mm). A regression model for the entire data and 12 monthly regression models for the monthly data were constructed using R, a large data analysis software. The 12 monthly regression models estimated the solar power generation better than the entire regression model. The variables with the highest influence on solar power generation were the insolation intensity variables during daylight hours and daylight time.


2019 ◽  
Vol 125 ◽  
pp. 10003 ◽  
Author(s):  
Jaka Windarta ◽  
Ardhito Pratama ◽  
Denis ◽  
Agung Nugroho

Indonesia is a country that is geographically located right in the equator and variously advantage and the wide for the use of solar energy. Indonesia has a relatively high radiation level, which is 4.80 kWh / m2 / day. Cemara Island is a tourist place but does not have electricity from PLN because access to its location is still difficult to reach. So from that chosen the planning system for the use of electrical energy using solar energy. However, economic analysis is needed so that the estimated weaknesses of the off-grid solar system can be estimated so as to reduce the risk of losses. The testing of each component in the Solar Power Plant system also needs to be done to determine the condition and quality of the components to be used. The economic analysis of the Cemara Island Solar Power Plant System with an initial investment of Rp 52,553,000, in scenario 1 uses interest at 6%, then in scenario 2 without using interest. Through calculations by looking for the value of COE (Energy Cost), NPC (Net Present Cost) and BEP (Break-Even Point), so that costs can be calculated by the manager with the number of 11 managers per month.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1018 ◽  
Author(s):  
Brady Bokelman ◽  
Efstathios E. Michaelides ◽  
Dimitrios N. Michaelides

The concept of a geothermal-solar power plant is proposed that provides dispatchable power to the local electricity grid. The power plant generates significantly more power in the late afternoon and early evening hours of the summer, when air-conditioning use is high and peak power is demanded. The unit operates in two modes: a) as a binary geothermal power plant utilizing a subcritical Organic Rankine Cycle; and b) as a hybrid geothermal-solar power plant utilizing a supercritical cycle with solar-supplied superheat. Thermal storage allows for continuous power generation in the early evening hours. The switch to the second mode and the addition of solar energy into the cycle increases the electric power generated by a large factor—2 to 9 times—during peak power demand at a higher efficiency (16.8%). The constant supply of geothermal brine and heat storage in molten salts enables this power plant to produce dispatchable power in its two modes of operation with an exergetic efficiency higher than 30%.


2022 ◽  
Vol 14 (2) ◽  
pp. 822
Author(s):  
Emiliia Iakovleva ◽  
Daniel Guerra ◽  
Pavel Tcvetkov ◽  
Yaroslav Shklyarskiy

The problem of increasing the efficiency of existing power plants is relevant for many countries. Solar power plants built at the end of the 20th century require, as their shelf lives have now expired, not only the replacement of the solar modules, but also the modernization of their component composition. This is due to the requirements to improve the efficiency of power plants to ensure the expansion of renewable energy technologies. This article presents a technical and economic analysis of the choice of solar power plant modernization method, which consists of (1) a method for calculating the amount of power generation; (2) the modeling of solar power plants under specific climatic conditions; (3) the analysis of electricity generation using different types of PV modules and solar radiation trapping technologies in Matlab/Simulink; and (4) the technical and economic analysis of a 2.5 MW solar power plant in the Republic of Cuba (in operation since 2015), for which four different modernization options were considered. All the scenarios differ in the depth of modernization; the results of the analysis were compared with the existing plant. The results of the study showed that the different modernization scenarios respond differently to changes in the inputted technical and economic parameters (cost per kWh, inflation rate, losses, and power plant efficiency). The maximum NPV deviations among the considered scenarios are: a 1% increase in inflation reduces NPV by 2%; a decrease in losses from 20% to 10% increases the NPV by 2.5%; a change in cost from EUR 0.05 to EUR 0.1 increases the NPV by more than 3.5 times. The dependence of the economic results was also tested as a function of three factors: solar module efficiency, inflation, and the price per 1 kWh. It was found that the greatest influence on the NPV of the proposed model is the price per 1 kWh. Based on this analysis, an algorithm was developed to choose the most effective scenario for the conditions of the Republic of Cuba for the modernization of the existing power plants.


Author(s):  
D. Matushkin ◽  
А. Bosak ◽  
L. Kulakovskyi

The new model of the wholesale electricity market in Ukraine causes appearance the market for the day ahead. In this market, the generating company undertakes to supply a certain amount of electricity. So, it is necessary to carry on the most accurate forecast of possible electricity generation by solar power plant (SPP). Generation value depends on certain factors. A brief summary of different influence of parameters on the PV cell performance has been provided. The article analyzes and identifies the factors that should be included in the forecast mathematical model of electricity generation by a solar power plant for a certain short-term period. According to analyzed data from SPP located in the Kyiv region, such parameters are the intensity of solar radiation, temperature and humidity, wind speed, and atmospheric pressure. The degree of influence of these factors on the initial function of electric energy generation were estimated by analyzing the scatter plot diagrams of relationship between parameters and correlation coefficients. Thus, the analysis of the influence of factors on the magnitude of electricity generation allowed to determine the priority of including each of the parameters in the mathematical model of the SPP power forecast. It was established that the influence of certain climate parameters for target function is different in each season. Therefore, in the mathematical model for forecasting electric power generation, it is necessary to take into account seasonality. In addition, the dynamic value change of factors also affects the current magnitude of electricity generation. Moreover, at different times of the year and with different combination of the corresponding values of climatic parameters, this effect may have different magnitudes. Therefore, the data obtained from the last periods before the forecasting should have a greater impact on obtaining the predicted value than the data from previous periods.


Sign in / Sign up

Export Citation Format

Share Document