Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil

Energy ◽  
2022 ◽  
pp. 123147
Author(s):  
Zhenbin Chen ◽  
Li Wang ◽  
Zhilong Wei ◽  
Yu Wang ◽  
Jiaojun Deng
Author(s):  
Laís A. Nascimento ◽  
Marilda N. Carvalho ◽  
Mohand Benachour ◽  
Valdemir A. Santos ◽  
Leonie A. Sarubbo ◽  
...  

2017 ◽  
Vol 68 ◽  
pp. 203-215 ◽  
Author(s):  
Dionisis Stefanitsis ◽  
Ilias Malgarinos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Emmanouil Kakaras ◽  
...  

1996 ◽  
Vol 26 (2) ◽  
pp. 2241-2250 ◽  
Author(s):  
M.A. Byrnes ◽  
E.A. Foumeny ◽  
T. Mahmud ◽  
A.S.A.K. Sharifah ◽  
T. Abbas ◽  
...  

Author(s):  
F. Mikaela Nordborg ◽  
Diane L. Brinkman ◽  
Gerard F. Ricardo ◽  
Susana Agustí ◽  
Andrew P. Negri

Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


2021 ◽  
Vol 216 ◽  
pp. 106800
Author(s):  
Xinyan Pei ◽  
Paolo Guida ◽  
K.M. AlAhmadi ◽  
Ibrahim A. Al Ghamdi ◽  
Saumitra Saxena ◽  
...  

Author(s):  
Julie Adams

Because the density of heavy fuel oil (HFO) is equal to or greater than that of freshwater, it behaves differently than lighter oils that float. Heavy fuel oil can sink to the bottom or be suspended in the water column and affect aquatic organisms that are not typically exposed to floating oils. Most research on oil spill technologies thus far examines the direct exposure of rainbow trout to floating or submerged oil droplets; there is little knowledge of the impacts of non‐floating heavy fuel oil on the water column and benthic organisms exposed to oil that accumulates in sediments. The toxicity of sunken HFO 6303 and Medium South American (MESA; reference) crude oil, as well as the effects of weathering on toxicity to embryos of rainbow trout were assessed using increasing concentrations of oil on gravel substrate in continuous‐flow desorption columns. Toxicity was assessed by measurement of the rates of mortality and growth, and the prevalence of blue sac disease, a hallmark sign of oil toxicity. The lower median lethal concentration for HFO compared to MESA indicated that HFO is more toxic. Interestingly, the LC50 values for fresh and weathered for both oils were similar, indicating little change in toxicity when the oil weathers naturally. Repetition of this experiment and analysis of PAH content in each treatment will provide more insight into the environmental and health risks associated with sunken heavy fuel oil.   


2014 ◽  
Author(s):  
Jeff Cowan

California experienced a 300% increase in loss of propulsion (LOP) incidents since its distillate fuel regulation came into effect in 2009. The compression ignition (Diesel) engines aboard modern cargo ships over 10,000 gross tons use 3.0% sulfur Heavy Fuel Oil (HFO). This fuel must be heated to flow through the fuel lines because at normal ambient temperature HFO has the consistency of tar. Distillate fuel in contrast does not require the high temperatures, and the thermodynamics of cooling metal, gaskets and seals resulted in leaks, along with filter clogging from engine buildup scrubbing. In addition, the cost savings of using HFO are significant over the use of distillate fuel which is typically around US$300 more per ton.


2021 ◽  
Author(s):  
Jessica Kersey ◽  
Natalie Popovitch ◽  
Amol Phadke

Abstract International maritime shipping—powered by heavy fuel oil—contributes 2.5%, 12%, and 13% of global anthropogenic CO2, SO2, and NOx emissions, respectively. The direct electrification of vessels has been underexplored as a low-emission option despite its considerable efficiency advantage over electrofuels such as green hydrogen and ammonia. Previous studies of ship electrification have relied on outdated battery cost and energy density values and have incorrectly assumed mechanical space to be a fixed technical variable. We show that with near-future battery prices of $100 kWh-1 the electrification of intraregional trade routes of less than 1,000 km is economically feasible with minimal impact to ship carrying capacity. Projected declines in battery price to $50 kWh-1 could improve this range to 5,000 km. We describe a pathway for the battery electrification of containerships within this decade that electrifies over 40% of global containership traffic, reduces CO2 emissions by 40% for US-based vessels, and mitigates the health impacts of air pollution on coastal communities.


Sign in / Sign up

Export Citation Format

Share Document