scholarly journals Quartz dissolution in a single phase-high pH Berea sandstone via alkaline injection

2021 ◽  
Vol 2 (3) ◽  
pp. 181-188
Author(s):  
Abdullah Musa Ali ◽  
Mohammed Yerima Kwaya ◽  
Abubakar Mijinyawa
1989 ◽  
Vol 179 ◽  
Author(s):  
Like Xie ◽  
E. A. Monroe

AbstractCement systems composed of tetracalcium phosphate powder or powder mixtures of tetracalcium phosphate and brushite were investigated. The liquid components for making the cements include aqueous solutions of H3PO4, Ca(OH)2, or Na2SiO3. For the tetracalcium phosphate cement, strong acidic or basic solutions must be used in order to achieve a short setting time.Our results show that the tetracalcium phosphate and brushite cement can set in a short time under suitable conditions. Humidity, particle size, and pH of liquid have a strong influence on cement setting. Solutions of Ca(OH)2 or Na2SiO3 can be used for making high pH cements and a solution of H3PO4 for a low pH setting cement. To reduce the setting time of cement, the key is to control the hydrolysis of tetracalcium phosphate. The results of hydrolysis indicate that, at 37°C, the single-phase tetracalcium phosphate can only be converted to hydroxyapatite when hydrolyzed in solutions with an H3PO4 solution concentration of ∼5% or with a high pH solution.Both the single-phase tetracalcium phosphate cement and the mixture phase cement have good biocompatibility. Appropriate concentrations of the solutions of Na2SiO 3,Ca(OH)2, or H3P04 can be used in the cements from the perspective of both biocompatibility and cement properties.


2020 ◽  
Author(s):  
Lisa de Ruiter ◽  
Anette Eleonora Gunnæs ◽  
Dag Kristian Dysthe ◽  
Håkon Austrheim

Abstract. Quartz has been replaced by magnesium silicate hydrate cement at the Feragen ultramafic body in south-east Norway. This occurs in deformed and recrystallized quartz grains deposited as glacial till covering part of the ultramafic body. Where the ultramafic body is exposed, weathering leads to high pH (~10), Mg-rich fluids. The dissolution rate of the quartz is about 3 orders of magnitude higher than experimentally derived rate equations suggest under the prevailing conditions. Quartz dissolution and cement precipitation starts at intergranular grain boundaries that act as fluid pathways through the recrystallized quartz. Etch pits are also extensively present at the quartz surfaces as result of preferential dissolution at dislocation sites. Transmission electron microscopy revealed an amorphous silica layer with a thickness of 100–200 nm around weathered quartz grains. We suggest that the amorphous silica is a product of interface-coupled dissolution-precipitation and that the amorphous silica subsequently reacts with the Mg-rich, high pH bulk fluid to precipitate magnesium silicate hydrate cement, allowing for further quartz dissolution and locally a complete replacement of quartz by cement. The cement is the natural equivalent of magnesium silicate hydrate cement (M-S-H), which is currently of interest for nuclear waste encapsulation or for environmentally friendly building cement, but not yet developed for commercial use. This study provides new insights that could potentially contribute in the further development of M-S-H cement.


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 389-404
Author(s):  
Lisa de Ruiter ◽  
Anette Eleonora Gunnæs ◽  
Dag Kristian Dysthe ◽  
Håkon Austrheim

Abstract. Quartz has been replaced by magnesium silicate hydrate cement at the Feragen ultramafic body in south-east Norway. This occurs in deformed and recrystallized quartz grains deposited as glacial till covering part of the ultramafic body. Where the ultramafic body is exposed, weathering leads to high-pH (∼ 10), Mg-rich fluids. The dissolution rate of the quartz is about 3 orders of magnitude higher than experimentally derived rate equations suggest under the prevailing conditions. Quartz dissolution and cement precipitation start at intergranular grain boundaries that act as fluid pathways through the recrystallized quartz. Etch pits are also extensively present at the quartz surfaces as a result of preferential dissolution at dislocation sites. Transmission electron microscopy revealed an amorphous silica layer with a thickness of 100–200 nm around weathered quartz grains. We suggest that the amorphous silica is a product of interface-coupled dissolution–precipitation and that the amorphous silica subsequently reacts with the Mg-rich, high-pH bulk fluid to precipitate magnesium silicate hydrate cement, allowing for further quartz dissolution and locally a complete replacement of quartz by cement. The cement is the natural equivalent of magnesium silicate hydrate cement (M-S-H), which is currently of interest for nuclear waste encapsulation and for environmentally friendly building cement, but it has not yet been developed for commercial use. This study provides new insights that could potentially contribute to the further development of M-S-H cement.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
Christopher A. Miller ◽  
Bridget Carragher ◽  
William A. McDade ◽  
Robert Josephs

Highly ordered bundles of deoxyhemoglobin S (HbS) fibers, termed fascicles, are intermediates in the high pH crystallization pathway of HbS. These fibers consist of 7 Wishner-Love double strands in a helical configuration. Since each double strand has a polarity, the odd number of double strands in the fiber imparts a net polarity to the structure. HbS crystals have a unit cell containing two double strands, one of each polarity, resulting in a net polarity of zero. Therefore a rearrangement of the double strands must occur to form a non-polar crystal from the polar fibers. To determine the role of fascicles as an intermediate in the crystallization pathway it is important to understand the relative orientation of fibers within fascicles. Furthermore, an understanding of fascicle structure may have implications for the design of potential sickling inhibitors, since it is bundles of fibers which cause the red cell distortion responsible for the vaso-occlusive complications characteristic of sickle cell anemia.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2020 ◽  
Vol 7 (1) ◽  
pp. 221-231
Author(s):  
Seong Won Hong ◽  
Ju Won Paik ◽  
Dongju Seo ◽  
Jae-Min Oh ◽  
Young Kyu Jeong ◽  
...  

We successfully demonstrate that the chemical bath deposition (CBD) method is a versatile method for synthesizing phase-pure and uniform MOFs by controlling their nucleation stages and pore structures.


Sign in / Sign up

Export Citation Format

Share Document