Cleavage fracture assessment of transient thermo-mechanical loading situations by local approach

2017 ◽  
Vol 178 ◽  
pp. 512-526 ◽  
Author(s):  
Johannes Tlatlik ◽  
Dieter Siegele
Author(s):  
Youn-Young Jang ◽  
Ji-Hee Moon ◽  
Nam-Su Huh ◽  
Ki-Seok Kim ◽  
Woo-Yeon Cho ◽  
...  

Abstract This paper is aimed to characterize ductile and cleavage fracture behavior of API X70 pipeline steel and investigate applicability of a micro-damage mechanics model to simulate static and dynamic crack propagation of single-edge notched tension (SENT) and drop-weight tear test (DWTT) specimens, as well as a local approach to describe cleavage fracture behavior. Gurson-Tvergaard-Needleman (GTN) model was applied to simulate ductile fracture behavior of SENT and DWTT specimens, where GTN model has been widely known for well-established model to characterize micro-damage process of void nucleation, growth and coalescence. As for a local approach, Beremin model was considered to estimate probability of cleavage fracture. In this regard, this study was especially focused on abnormal fracture appearance of DWTT specimen. In the present study, firstly, experiment data from tensile specimen test was used to obtain plastic flow curve (i.e. stress and strain curve). And load-CMOD and J-integral/CTOD resistance curves obtained from SENT test were used to characterize static ductile fracture and calibrate GTN model parameters for X70 pipeline steel. And the calibrated GTN model parameters were verified by comparing experiment data from DWTT test such as load-displacement and crack length-time curves with those from FE analysis. To accommodate dynamic effect on material properties, rate-dependent stress-strain curves were considered in FE analyses. To describe cleavage fracture, the Weibull stress was calculated from FE analyses of DWTT and Weibull parameters were calibrated by comparing with probability distribution of cleavage fracture from experiment data of DWTT specimen. Using Weibull parameters, the whole of cleavage fracture probability can be estimated as ductile shear area of DWTT specimen increases.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 982 ◽  
Author(s):  
Guian Qian ◽  
Wei-Sheng Lei ◽  
Zhenfeng Tong ◽  
Zhishui Yu

It is a conventional practice to adopt Weibull statistics with a modulus of 4 for characterizing the statistical distribution of cleavage fracture toughness of ferritic steels, albeit based on a rather weak physical justification. In this study, a statistical model for cleavage fracture toughness of ferritic steels is proposed according to a new local approach model. The model suggests that there exists a unique correlation of the cumulative failure probability, fracture toughness and yield strength. This correlation is validated by the Euro fracture toughness dataset for 1CT specimens at four different temperatures, which deviates from the Weibull statistical model with a modulus of four.


Author(s):  
Andrew Abu-Muharib ◽  
Andrey P. Jivkov ◽  
Peter James ◽  
John R. Yates

The ability to predict variations in cleavage fracture toughness behaviour of ferritic RPV steels, accounting for the effects of irradiation and defect geometry, is vital to safety assessment and life extension decisions. Local approaches to cleavage fracture offer a promising methodology to accomplish such calculations. However, the limited progress achieved by improving the local failure probability expression suggests that the methodology for calculating global cleavage might not be adequately representing real material. The basis for the existing methodology is the weakest-link assumption that all individual failure events are independent and non-interacting. Here an approach is considered which utilises a microstructure-informed model incorporating the experimental knowledge needed to postulate deterministic criteria for particle rupture and micro-crack propagation, whilst accounting for the probabilistic distribution of particle sizes. This is then used in a lattice model that can help detail the evolution of the formation of micro-cracks on global failure, therefore inferring the suitability of the weakest-link assumption. Predicting the probability of cleavage fracture requires such models, as the macroscopic cleavage phenomenon is governed by a number of micro-structural features. The material microstructure is represented by a regular lattice of truncated octahedral cells forming a computational site-bond model, with sites located at the cell centres and connected by two distinct sets of bonds. These bonds are modelled with structural beam elements, which represent all the possible relative deformations between coordinated sites. Particles of various sizes are distributed in the bonds, based on an experimentally determined distribution of cleavage initiating particles in RPV steel (Euro Material A). Although only elastic deformations are considered here, the results demonstrate that the interactions between individual failure events could potentially have a strong effect on the way global failure is reached. Nucleation of micro-cracks by rupturing second-phase particles affects their subsequent formation. In particular, it was found that once formed there is a reduced probability of further development of micro-cracks at particles outside the crack planes and an enhanced probability of formation at particles along the crack planes. This will therefore influence the distribution of micro-crack sizes that could in principle be used to calculate the global probability of failure, and could lead to substantially different distributions of particle sizes, then used in the current local approach methods.


Author(s):  
Quanxin Jiang ◽  
V. M. Bertolo ◽  
V. A. Popovich ◽  
Carey L. Walters

Abstract Offshore activity in low-temperature areas requires the use of analysis methods that are capable of reliably predicting cleavage (brittle) fracture of ferritic steels in order to guarantee the structural integrity during service. Cleavage fracture is controlled by physical events at different size scales and is influenced by the multiple microstructural parameters of the material. The prediction of fracture toughness of steels based on the microstructure has received great attention, and relevant techniques have been continuously developed. This paper is aimed at reviewing the recent development of cleavage fracture modelling in steels and identifying the existing challenges to inspire further research. The paper contains three parts aimed at explaining how methods are developed and utilized to predict fracture toughness of steel from its microstructures. (1) The complex multiparametric nature of the microstructures of ferritic steels and its influence on cleavage fracture is introduced. (2) A review is given on the main perspectives and models in micromechanisms of cleavage fracture in steels. (3) Discussion is contributed to the link between micromechanisms and the local approach in cleavage fracture modelling. As a result, the paper gives a state of the art on microstructural mechanics and local approach methods of cleavage fracture modelling in structural steels.


Sign in / Sign up

Export Citation Format

Share Document