scholarly journals The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel

2019 ◽  
Vol 209 ◽  
pp. 369-381 ◽  
Author(s):  
Yao Wang ◽  
Lichao Yuan ◽  
Shijia Zhang ◽  
Chengqi Sun ◽  
Wenjing Wang ◽  
...  
2012 ◽  
Vol 06 ◽  
pp. 239-244
Author(s):  
A. YAMAUCHI ◽  
H. MIYAHARA ◽  
C. MAKABE ◽  
T. MIYAZAKI

The effects of an overload on fatigue crack growth behavior have been investigated by using carbon steel. Delayed retardation and acceleration of crack growth were both observed. These phenomena depended not only on overload conditions but also on the baseline stress conditions. Moreover, the mechanical properties of the materials affected the crack growth rate after overload. It was found that crack growth accelerated when tensile residual stress was distributed in front of the crack tip. The residual stress distribution is related to the crack opening geometry at the overload stage.


Author(s):  
Sai Deepak Namburu ◽  
Lakshmana Rao Chebolu ◽  
A. Krishnan Subramanian ◽  
Raghu Prakash ◽  
Sasikala Gomathy

Welding residual stress is one of the main concerns in the process of fabrication and operation because of failures in welded steel joints due to its potential effect on structural integrity. This work focuses on the effect of welding residual stress on the ductile crack growth behavior in AISI 316LN welded CT specimens. Two-dimensional plane strain model has been used to simulate the CT specimen. X-ray diffraction technique is used to obtain residual stress value at the SS 316LN weld joint. The GTN model has been employed to estimate the ductile crack growth behavior in the CT-specimen. Results show that residual stresses influence the ductile crack growth behavior. The effect of residual stress has also been investigated for cases with different initial void volume fraction, crack lengths.


Author(s):  
Jinya Katsuyama ◽  
Wataru Asano ◽  
Kunio Onizawa ◽  
Masahito Mochizuki ◽  
Masao Toyoda

Stress corrosion cracking (SCC) of core internals and/or recirculation pipes of austenite stainless steel (Type 316L) has been observed. When a SCC is detected at the reactor internals or pipes, it is necessary to calculate crack growth behavior of the crack for a certain operational period. The SCC initiates and grows near the welding zone because of high tensile residual stress by welding relative to the other contributing factors of material and environment. Therefore, the residual stress analysis due to welds of austenitic stainless piping is becoming important and has been already conducted by many researchers. In present work, the through-thickness residual stress distributions near multi-pass butt-welds of Type 316L pipes have been calculated by thermo-elastic-plastic analyses with the geometric and welding conditions changed and collected from literatures. Then crack growth simulations were performed using calculated and collected residual stress distributions. The effects of geometric and welding conditions on crack growth behavior were also discussed.


Author(s):  
P. Dong ◽  
G. Rawls

Detailed residual stress analysis was performed for a multi-pass butt weld, representing the middle butt-girth weld of a storage tank. The analysis procedures addressed welding parameters, joint detail, weld pass deposition sequence, and temperature-dependent properties. The predicted residual stresses were then considered in stress intensity factor calculations using a three-dimensional finite element alternating model (FEAM) for investigating crack growth behavior for both small elliptical surface and through-wall cracks. Two crack orientations were considered: one is parallel to the vessel girth weld and the other is perpendicular to the girth weld. Since the longitudinal (parallel to weld) and transverse (perpendicular to weld) residual stresses exhibit drastically different distributions, a different crack growth behavior is predicted. For a small surface crack parallel to the weld, the crack tends to grow more quickly at the surface along the weld rather than into the thickness. The self-equilibrating nature of the transverse residual stress distribution suggests that a through-wall crack parallel to crack cannot be fully developed solely due to residual stress actions. For a crack that is perpendicular to the weld, a small surface crack exhibit a rapid increase in K at the deepest position, suggesting that a small surface crack has the propensity to become a through-wall crack. Once the through crack is fully developed, a significant re-distribution in longitudinal residual stress can be seen. As a result, in the absence of external loads there exists a limiting crack length beyond which further crack growth is deemed unlikely.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Andrew H. Sherry ◽  
Mark A. Wilkes ◽  
John K. Sharples ◽  
Peter J. Budden

This paper presents the results of a numerical study undertaken to assess the influence of residual stresses on the ductile tearing behavior of a high strength low toughness aluminum alloy. The Gurson–Tvergaard model was calibrated against conventional fracture toughness data using parameters relating to void nucleation, growth, and coalescence. The calibrated model was used to predict the load versus ductile tearing behavior of a series of full-scale and quarter-scale wide-plate tests. These center-cracked tension tests included specimens that contained a self-balancing residual stress field that was tensile in the region of the through-wall crack. Analyses of the full-scale wide-plate tests indicated that the model provides a good prediction of the load versus the ductile tearing behavior up to approximately 3mm of stable tearing. The influence of residual stress on the load versus the crack growth behavior was accurately simulated. Predictions of the load versus the crack growth behavior of full-scale wide-plate tests for crack extensions greater than 3mm and of the quarter-scale tests were low in terms of predicted load at a given amount of tearing. This was considered to result from (i) the “valid” calibration range in terms of specimen thickness and crack extension, (ii) the development of shear lips, and (iii) the differences in the micromechanism of ductile void formation under plane strain and under plane stress conditions.


Sign in / Sign up

Export Citation Format

Share Document