Theory of Critical Distances and static/dynamic fracture behaviour of un-reinforced concrete: length scale parameters vs. material meso-structural features

Author(s):  
N. Alanazi ◽  
L. Susmel
2000 ◽  
Vol 66 (6) ◽  
pp. 537-549 ◽  
Author(s):  
L. Tosal ◽  
C. Rodrı́guez ◽  
F.J. Belzunce ◽  
C. Betegón

Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


Author(s):  
Aniket B. Bhosale ◽  
S. Suriya Prakash

Abstract Improvement in fracture behaviour of fibre-reinforced concrete (FRC) due to the inclusion of various types and combinations of fibres is widely reported. The fracture behaviour of FRC needs to be fully understood for the optimum use of these fibres in structural elements. Fracture behaviours of synthetic fibre-reinforced concrete (SynFRC), hybrid fibre-reinforced concrete (HFRC) and steel fibre-reinforced concrete (SFRC) are investigated in this study using digital image correlation (DIC) technique. This work focuses on improvement in the structural performance of FRC through a comprehensive study of the change in the crack length, crack opening and fracture process zone (FPZ) due to different fibres addition and their combinations. Three distinct fibre dosages of 0.50%, 0.75%, and 1.00%, of macro-polyolefin fibres, hooked end steel fibres and their hybrid combination are regarded as research parameters. Test outcomes indicate that HFRC offers higher post-cracking resistance when compared to SynFRC. SFRC showcases superior fracture performance than that of HFRC and SynFRC. Full-field strain measurements from DIC are used to measure the crack openings at different load levels during the fracture tests. Results of DIC analysis show good agreement with experimental measurements. Continuous monitoring of strain contours using DIC reveals the effective engagement of fibres along the depth at higher dosages for HFRC when compared to that of SynFRC. Also, HFRC had longer cracks than SFRC at a particular load.


2019 ◽  
Vol 29 ◽  
pp. 02003 ◽  
Author(s):  
Vyacheslav N. Burlayenko ◽  
Tomasz Sadowski ◽  
Daniel Pietras

Numerical simulations of dynamic fracture behaviour of a double cantilever sandwich beam subjected to uneven bending moments in plane conditions are carried out using the dynamic finite element analyses with the ABAQUSTM code. The strain energy release rate was evaluated by means of the finite element model developed within the two-dimensional (2-D) linear elastodynamic theory. This demonstrates the capability and the reliability of the finite element modelling as an extremely useful numerical tool for solving dynamic fracture mechanics problems. Also, the dynamic behaviour of fracture parameters and interface crack progression is discussed.


2005 ◽  
Vol 127 (1) ◽  
pp. 16-22 ◽  
Author(s):  
J. Lou ◽  
P. Shrotriya ◽  
W. O. Soboyejo

This paper presents the results of recent studies of cyclic microbend experiments and their consequences for plasticity length-scale phenomena in LIGA Ni microelectromechanical systems (MEMS) thin films. The strain–life fatigue behavior of LIGA Ni thin films is studied by performing fully reversed cyclic microbend experiments that provide insights into cyclic stress/strain evolution and cyclic failure phenomena. The effects of cyclic deformation on the plasticity length-scale parameters are also considered within the context of strain gradient plasticity theories. The implications of the results are then discussed for the analysis of plasticity and cyclic deformation in MEMS structures and other microscale systems.


Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Sahmani

In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.


Sign in / Sign up

Export Citation Format

Share Document