Evaluation of the flexural strength and serviceability of concrete beams reinforced with different types of GFRP bars

2018 ◽  
Vol 173 ◽  
pp. 606-619 ◽  
Author(s):  
Amr El-Nemr ◽  
Ehab A. Ahmed ◽  
Adel El-Safty ◽  
Brahim Benmokrane
2019 ◽  
Vol 186 ◽  
pp. 282-296 ◽  
Author(s):  
Omar I. Abdelkarim ◽  
Ehab A. Ahmed ◽  
Hamdy M. Mohamed ◽  
Brahim Benmokrane

2021 ◽  
Vol 9 (12) ◽  
pp. 441-447
Author(s):  
K. Srinivas

Abstract: To study the flexural behaviour of plain cement concrete with self-compaction concrete using three point loading. We are using two different types of concrete (Plain Cement Concrete and Self Compaction Concrete). For this we are using M20 grade concrete. We cast cubes and beams of sizes 150x150x150mm and 150x150x700mm respectively.Based on the test results it is concluded that the flexural strength of the self-compaction concrete beams is more than the plain cement concrete beams. And in the combination also the flexural strength is more when the plain cement concrete layer is at the bottom while the selfcompaction concrete layer is at top.


2021 ◽  
pp. 136943322110015
Author(s):  
Akram S. Mahmoud ◽  
Ziadoon M. Ali

When glass fibre-reinforced polymer (GFRP) bar splices are used in reinforced concrete sections, they affect the structural performance in two different ways: through the stress concentration in the section, and through the configuration of the GFRP–concrete bond. This study experimentally investigated a new method for increasing the bond strength of a GFRP lap (two GFRP bars connected together) using a carbon fibre-reinforced polymer (CFRP) sheet coated in epoxy resin. A new splicing method was investigated to quantify the effect of the bar surface bond on the development length, with reinforced concrete beams cast with laps in the concrete reinforcing bars at a known bending span length. Specimens were tested in four-point flexure tests to assess the strength capacity and failure mode. The results were summarised and compared within a standard lap made according to the ACI 318 specifications. The new method for splicing was more efficient for GFRP splice laps than the standard lap method. It could also be used for head-to-head reinforcement bar splices with the appropriate CFRP lapping sheets.


2013 ◽  
Vol 49 ◽  
pp. 949-961 ◽  
Author(s):  
Pedro Santos ◽  
Gilberto Laranja ◽  
Paulo M. França ◽  
João R. Correia

2019 ◽  
Vol 22 (1) ◽  
pp. Process
Author(s):  
Shereen Ahmed Nossair ◽  
Tarek Salah ◽  
Kamal Khaled Ebeid

Objective: This study was designed to evaluate the biaxial flexural strength (BFS) of different types of unshaded and shaded monolithic zirconia. Material and Methods: 120 monolithic zirconia ceramic discs were fabricated. They were divided into twelve groups (n=10), Group 1; Bruxzir unshaded, Group 2; Bruxzir shaded A2, Group 3; Bruxzir anterior white, Group 4; Bruxzir anterior shade A2, Group 5; Prettau unshaded, Group 6; Prettau shaded with A2 coloring liquid, Group 7; Prettau anterior white, Group 8; Prettau anterior shaded with A2 coloring liquid, Group 9; Katana HT white, Group 10; Katana HT shade A2, Group 11; Katana ST white, Group 12; Katana ST shade A2. All discs were milled using a dental milling machine, and had final dimensions after sintering of 15 mm diameter and 1 mm thickness. BFS was tested using piston on three ball technique. Results:  One-way ANOVA revealed significant differences among the 12 groups. Tukey post-hoc tests revealed no significant differences between the groups 3, 4, ,7 ,8 11, and 12. However, they all had BFS values that are significantly lower than all other groups. Group 2 showed statistically significant higher BFS values when compared to group 3,4, 7, 8, 11, and 12 while it showed statistically significant lower values when compared to groups 1, 5, 6, 9, and 10. Conclusion: Increase in the yttria content in zirconia led to a decrease in its BFS. Shading of zirconia did not have a significant effect on the final strength of zirconia. KeywordsDental ceramics; Dental esthetics; Flexural strength; Shaded zirconia. 


2019 ◽  
Vol 9 (3) ◽  
pp. 4213-4217 ◽  
Author(s):  
A. H. Buller ◽  
M. Oad ◽  
B. A. Memon ◽  
S. Sohu

In this article, the effect of prolonged fire (24-hour duration) on reinforced concrete beams made with recycled aggregates from demolished concrete was experimentally investigated. Demolished concrete was used recycled coarse aggregates in equal proportion with natural coarse aggregates. Normal and rich mix concrete with water-cement ratio equal to 0.54 were used. As a control specimen, beams with all-natural aggregates were also cast to compare with the results of the proposed beams. All beams were cured for 28 days and exposed to fire at 1000°C in an oven for 24 hours. After the elapse of this fire period, the beams were allowed to air cool, followed by testing till failure in a universal load testing machine. Comparison of the test results shows that rich mix concrete beams more reduction in flexural strength, more increase in maximum load carrying capacity and deflection than normal mix beams. The maximum reduction in flexural strength was 32.41% for beams cast with 50% RCA and rich mix. Although the fire duration used in this study is rare, yet the outcome provides guidelines for taking proper decisions for retrofitting/strengthening of the fire affected structure before putting it back in service.


Sign in / Sign up

Export Citation Format

Share Document