An analytical method for determining the tensile membrane action of RC slab panels

2021 ◽  
Vol 245 ◽  
pp. 112895
Author(s):  
Yong Wang ◽  
Gongchen Wang ◽  
Zhaohui Huang ◽  
Yuner Huang ◽  
Yaqiang Jiang ◽  
...  
2013 ◽  
Vol 14 (01) ◽  
pp. 1350052 ◽  
Author(s):  
LI CHEN ◽  
QIN FANG ◽  
ZHIKUN GUO ◽  
JINCHUN LIU

Once a RC structure is laterally restrained, both the static and dynamic load resistances will be enhanced due to the membrane action. Despite this known advantage, the apparent lack of systemic and efficient methods of analysis poses a drawback in the design and assessment of blast-resistant RC structures. First, a simplified membrane action theory was presented by modifying the maximum membrane force design method (MMFM) for predicting the total static resistance-deflection curves of restrained beam-slab RC structures. Second, a series of constrained beams were tested to validate the new theory, for which better agreement was observed between the test data, the results predicted by the proposed theory and those by MMFM. The results show that the static load carrying capacity and membrane force increase with increasing restraint stiffness, and the smaller the reinforcement ratio is, the larger the load carrying capacity increases. Third, based on the improved compressive static membrane action theory, a new analytical method was developed to investigate the dynamic responses of restrained RC structures subjected to blast loads, using an equivalent single degree of freedom system that combines the three-parameter elasto-viscoplastic rate-sensitive material model with the proposed static theory. Good agreement is observed between the test data and the analytical results. Finally, it is demonstrated that the dynamic resistance capacity increases with increasing load rate and restraint stiffness and with decreasing tensile reinforcement ratio, but the larger the dynamic resistance is, the larger the plastic deformation of the structure.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050094
Author(s):  
Wanxiang Chen ◽  
Lisheng Luo ◽  
Zhikun Guo ◽  
Yingjie Wang

Fully clamped reinforced concrete (RC) slab is a common structural component possessing better load-carrying capacity over simply supported slab. Currently, typical yield line theory is a popular approach to estimate the bearing capacity of fully clamped RC slab, although it would greatly underestimate the actual ultimate resistance. This paper is devoted to enriching the knowledge of membrane action and its contribution to the load-carrying capacity of the clamped slab. The resistance trajectory of fully clamped RC slab from loading to failure undergoes three phases: the ascending branch raised by outward movement prevention, the descending branch due to crushed concrete and the re-ascending branch caused by reinforcement strain. Applied load–deflection curves of RC slab accompanying compressive-membrane actions are achieved according to the bending theory of normal cross-section. The reserve capacities accompanying tensile-membrane actions in the condition of large deformations are further derived. The whole load–deflection curves that considered compressive-tensile membrane effects are finally presented, where the mid-span displacements are revised by the deflection equations and the softening coefficient of flexural rigidity. It is indicated that the load–deflection relationships of fully clamped RC slabs can be reasonably depicted by taking compressive-tensile membrane effects into account, which are fairly different from yield line approaches. Comparative analysis shows that analytical results are in good agreement with experimental data reported by Park et al. and illustrates that the proposed model is capable of predicting the bearing capacity of fully clamped RC slab with very good accuracy.


2009 ◽  
Vol 417-418 ◽  
pp. 805-808
Author(s):  
Qing Xiang Wang ◽  
Gang Wang ◽  
Zhong Jun Li

Subjecting to the compressive membrane action (CMA), the ultimate load capacity of the reinforced concrete (RC) slab with lateral restraint would be improved obviously. Test of 12 one-way slab specimens restrained by shear-walls was carried out to investigate the properties of the slab strips’ compressive membrane action. The reduced-size specimens were designed to keep the ratios of shear-walls’ restraint stiffness to slab strips’ flexural stiffness unchanged. One horizontal testing instrument was first used to record the development of the slabs’ lateral restraint forces. The ultimate loads of slab strips with certain lateral restraint stiffness gave an average 38.3% rise from the calculations of upper-bound method. Though the increment of slab’s ultimate load was due to the additional moment formed by the lateral restraint force, the results showed that the peak of lateral force lagged of the slab strips’ ultimate load, which was different from the previous hypothesis. Various parameters which affect the development of CMA were also investigated, such as the shear-wall’s thickness, axial load on the walls, the slab strips’ span-height ratio and reinforcement percentage.


2012 ◽  
Vol 166-169 ◽  
pp. 845-848
Author(s):  
Jun Xian Liu ◽  
Kang Hai Tan

It is known from previous experiments that the load-carrying capacity for RC slabs at large deflection is governed and enhanced by the tensile membrane action. However, due to the intrinsic complexity of concrete properties, it is hard to capture the history of the load-deflection relationship for RC slabs. After reviewing several analytical reinforced concrete models, the author develops a simplified load-displacement semi-analytical model for laterally unrestrained simply supported RC slabs. Three stages have been identified for this model, which are elastic stage, transition stage and pure tensile membrane action stage. Compared with the existing RC slab tests, the author's model shows good agreement with the previous test results.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
K Miyagi ◽  
T Fujise ◽  
N Koga ◽  
K Wada ◽  
M Yano ◽  
...  

Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


The Synergist ◽  
2000 ◽  
Vol 11 (8) ◽  
pp. 26 ◽  
Author(s):  
Robert P. Streicher ◽  
Christopher M. Reh ◽  
Rosa Key-Schwartz ◽  
Paul C. Schlecht ◽  
Mary Ellen Cassinelli ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document