Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass

2013 ◽  
Vol 89 ◽  
pp. 28-35 ◽  
Author(s):  
Lixin Xu ◽  
Jingjin Yu ◽  
Liebao Han ◽  
Bingru Huang
2011 ◽  
Vol 136 (4) ◽  
pp. 247-255 ◽  
Author(s):  
Lixin Xu ◽  
Liebao Han ◽  
Bingru Huang

The objectives of this study were to examine antioxidant enzyme responses to drought stress and rewatering at both enzymatic activity and transcript levels and to determine the major antioxidant processes associated with drought tolerance and post-drought recovery for a perennial grass species, kentucky bluegrass (Poa pratensis). Antioxidant enzyme responses to drought and rewatering in a drought-tolerant cultivar (Midnight) and a drought-sensitive cultivar (Brilliant) were compared in a growth chamber. Plants were exposed to 22 days of drought stress for ‘Midnight’ and 18 days for ‘Brilliant’ before rewatering to allow the leaf relative water content (RWC) of both cultivars to drop to the same level. ‘Midnight’ exhibited higher photochemical efficiency (Fv/Fm) and lower electrolyte leakage compared with ‘Brilliant’ when at the same water deficit status (26% to 28% RWC). After 6 days of rewatering, all physiological parameters returned to the control level for ‘Midnight’, but only Fv/Fm fully recovered for ‘Brilliant’. The transcript level of cytosolic copper/zinc superoxide dismutase (cyt Cu/Zn SOD) and ascorbate peroxidase (APX) was significantly higher in ‘Midnight’ than in ‘Brilliant’ when exposed to the same level of water deficit (26% to 28% RWC), suggesting that SOD and APX could be involved in scavenging oxidative stress-induced reactive oxygen species in kentucky bluegrass through changes in the level of gene expression. Significantly higher activities of APX, monodehydroascorbate reductase, glutathione reductase, and dehydroascorbate reductase as well as lower lipid peroxidation levels were observed in ‘Midnight’ versus ‘Brilliant’ when exposed to drought. However, the activities of SOD, catalase (CAT), and guaiacol peroxidase (POD) did not differ between the two cultivars. After 6 days of rewatering, ‘Midnight’ displayed significantly higher activity levels of CAT, POD, and APX compared with ‘Brilliant’. The enzyme activity results indicate that enzymes involved in the ascorbate–glutathine cycle may play important roles in antioxidant protection to drought damage, whereas CAT, POD, and APX could be associated with better post-drought recovery in kentucky bluegrass.


2013 ◽  
Vol 138 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Zhimin Yang ◽  
Lixin Xu ◽  
Jingjin Yu ◽  
Michelle DaCosta ◽  
Bingru Huang

Carbohydrate metabolism is important for plant adaptation to drought stress. The objective of this study was to examine major forms of carbohydrates associated with superior drought tolerance and post-drought recovery in kentucky bluegrass (Poa pratensis) by comparing responses of different forms of carbohydrates with drought stress and re-watering in two cultivars contrasting in drought tolerance. Plants of drought-tolerant ‘Midnight’ and drought-sensitive ‘Brilliant’ were maintained well watered or subjected to drought stress for 10 days by withholding irrigation, and drought-stressed plants were re-watered for 3 days. Physiological analysis (turf quality, relative water content, and electrolyte leakage) confirmed the genetic variability of the two cultivars in drought tolerance. The two cultivars exhibited differential responses to drought stress and re-watering for the content of water-soluble sugars (sucrose, fructose, and glucose) and storage carbohydrates (starch and fructan), and ‘Midnight’ maintained higher sucrose content at 10 days of drought stress and more fructan at 3 days of re-watering. The greater accumulation of sucrose in ‘Midnight’ under drought stress corresponded with higher activities of two sucrose-synthesizing enzymes (sucrose phosphate synthase and sucrose synthase) but was not related to the sucrose-degrading enzyme activity (acid invertase). These results suggested that increased sucrose accumulation resulting from the maintenance of active sucrose synthesis could be associated with superior turf performance during drought stress, whereas increased fructan accumulation could contribute to rapid re-growth and post-drought recovery on re-watering in kentucky bluegrass.


2013 ◽  
Vol 18 (3) ◽  
pp. 556-564 ◽  
Author(s):  
Yun WANG ◽  
Jian LI ◽  
Jitao LI ◽  
Yuying HE ◽  
Zhiqiang CHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document