Pure blue light effects on growth and morphology are slightly changed by adding low-level UVA or far-red light: A comparison with red light in four microgreen species

2019 ◽  
Vol 157 ◽  
pp. 58-68 ◽  
Author(s):  
Yun Kong ◽  
Katherine Schiestel ◽  
Youbin Zheng
Keyword(s):  
1991 ◽  
Vol 46 (7-8) ◽  
pp. 542-548 ◽  
Author(s):  
F. López-Figueroa

Abstract The chlorophyll synthesis in the brown algae Desmarestia aculeata is affected by light quality and by the nutrient state in the medium before the illumination. Pulses of 5 min of red, green and blue light together with 200 μM nitrate in plants growing under natural conditions deter­ mined similar induction of chlorophyll synthesis. However, when the plants were incubated previously under starvation conditions the light effect was different. The induction of chlorophyll synthesis was greater after blue and green light than after red light pulses. Red-light photoreceptor was only involved in the chlorophyll synthesis under no nutrient limitations and under starvation conditions after previous illumination with blue light followed by far-red light. The induction of chlorophyll synthesis by green and blue light pulses applied together with nitrate was greater when the algae were incubated in starvation conditions than in natural conditions (normal nutrient state). Because all light effects were partially reversed by far-red light the involvement of a phyto-chrome-like photoreceptor is proposed. In addition, a coaction between blue-and a green-light photoreceptors and phytochrome is suggested.


2014 ◽  
Vol 175 (6) ◽  
pp. 731-740 ◽  
Author(s):  
Timothy J. Sindelar ◽  
Katherine D. L. Millar ◽  
John Z. Kiss

2014 ◽  
Vol 9 (11) ◽  
pp. e976158
Author(s):  
Yihai Wang ◽  
Kevin M Folta
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1211
Author(s):  
Barbara Frąszczak ◽  
Monika Kula-Maximenko

The spectrum of light significantly influences the growth of plants cultivated in closed systems. Five lettuce cultivars with different leaf colours were grown under white light (W, 170 μmol m−2 s−1) and under white light with the addition of red (W + R) or blue light (W + B) (230 μmol m−2 s−1). The plants were grown until they reached the seedling phase (30 days). Each cultivar reacted differently to the light spectrum applied. The red-leaved cultivar exhibited the strongest plasticity in response to the spectrum. The blue light stimulated the growth of the leaf surface in all the plants. The red light negatively influenced the length of leaves in the cultivars, but it positively affected their number in red and dark-green lettuce. It also increased the relative chlorophyll content and fresh weight gain in the cultivars containing anthocyanins. When the cultivars were grown under white light, they had longer leaves and higher value of the leaf shape index. The light-green cultivars had a greater fresh weight. Both the addition of blue and red light significantly increased the relative chlorophyll content in the dark-green cultivar. The spectrum enhanced with blue light had positive influence on most of the parameters under analysis in butter lettuce cultivars. These cultivars were also characterised by the highest absorbance of blue light.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilor Kelly ◽  
Danja Brandsma ◽  
Aiman Egbaria ◽  
Ofer Stein ◽  
Adi Doron-Faigenboim ◽  
...  

AbstractThe hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells’ HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.


Author(s):  
Leila Kharazi ◽  
Sahar Dadkhahfar ◽  
Hoda Rahimi ◽  
Mehdi Gheisari ◽  
Nikoo Mozafari ◽  
...  

1970 ◽  
Vol 48 (6) ◽  
pp. 1251-1257 ◽  
Author(s):  
N. P. Voskresenskaya ◽  
G. S. Grishina ◽  
S. N. Chmora ◽  
N. M. Poyarkova

Apparent photosynthesis of attached leaves of Phaseolus vulgaris, Vicia faba, Pisum sativum, and Nicotiana tabacum at various intensities of blue and red light was measured by infrared CO2 gas analyzer in a closed system. Simultaneously the CO2 compensation point was measured.It was found that light-limited photosynthetic rate in blue light was equal to or more than that in red light. Inhibition of photosynthesis, which sometimes occurred at light-saturated intensities of blue light, could be avoided by addition of red light, prolonged exposure of the plants to blue light, or by lowering the O2 concentration. Accordingly, the increase of photosynthetic rate due to change of O2 concentration from 21 to 3% O2 is higher in blue light only when photosynthesis is inhibited by blue light at 21% O2. The data on the action of blue and red light on the CO2 compensation point seems to exclude the activation of photorespiration by blue light.The possible effects of blue light on apparent photosynthesis are discussed on the basis of the results presented.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


Sign in / Sign up

Export Citation Format

Share Document