Characterization of salicylic acid- and abscisic acid-mediated photosynthesis, Ca2+ and H2O2 accumulation in two distinct phases of drought stress intensity in Brassica napus

2021 ◽  
Vol 186 ◽  
pp. 104434
Author(s):  
Sang-Hyun Park ◽  
Bok-Rye Lee ◽  
Van Hien La ◽  
Md. Al Mamun ◽  
Dong-Won Bae ◽  
...  
2014 ◽  
Vol 59 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Youngho Seo ◽  
Kijin Park ◽  
Eunha Chang ◽  
Sihwan Ryu ◽  
Jongyeol Park ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1589
Author(s):  
Dragana D. Antonić ◽  
Angelina R. Subotić ◽  
Milan B. Dragićević ◽  
Danijel Pantelić ◽  
Snežana M. Milošević ◽  
...  

Impatiens walleriana is a valued ornamental plant sensitive to drought stress. We investigated whether the foliar application of 2mM salicylic acid (SA) can protect potted I. walleriana plants from drought stress. The plants were divided into: watered plants, drought-stressed plants, watered plants treated with SA and drought-stressed plants treated with SA. The number of flowers and flower buds, relative water content (RWC), contents of malondialdehyde (MDA) and proline (Pro) and the activities of superoxide dismutases, catalases and peroxidases were recorded at different time points. Three dehydrin sequences were identified in de novo assembled leaf transcriptome: IwDhn1, IwDhn2.1 and IwDhn2.2. Drought stress caused wilting, floral abortion, reduction of RWC and increased MDA—an indicator of lipid peroxidation. In response to drought, Impatiens accumulated Pro and induced chloroplastic Cu/ZnSOD and two peroxidase isoforms. The most remarkable drought response was strong induction of IwDhn2.1 and IwDhn2.2. Rehydration restored RWC, Pro level, Cu/ZnSOD activity and dehydrins expression in drought-stressed plants approximately to the values of watered plants.SA had ameliorating effects on plants exposed to drought, including prevention of wilting, preservation of RWC, increased Pro accumulation, modulation of antioxidative activities and remarkable decrease of lipid peroxidation, but without effects on flowers’ preservation.


2013 ◽  
Vol 14 (7) ◽  
pp. 15179-15198 ◽  
Author(s):  
Mu-Heng Zeng ◽  
Sheng-Hong Liu ◽  
Miao-Xian Yang ◽  
Ya-Jun Zhang ◽  
Jia-Yong Liang ◽  
...  

2016 ◽  
Vol 43 (8) ◽  
pp. 849-859 ◽  
Author(s):  
Jasdeep Chatrath Padaria ◽  
Radha Yadav ◽  
Avijit Tarafdar ◽  
Showkat Ahmad Lone ◽  
Kanika Kumar ◽  
...  

2020 ◽  
Author(s):  
Lisa Heyman ◽  
Antonios Chrysargyris ◽  
Kristof Demeestere ◽  
Nikolaos Tzortzakis ◽  
Monica Höfte

Abstract BackgroundClimate change will increase the occurrence of plants simultaneously suffering drought and pathogen stress. Although it is well-known that drought can alter the way plants respond to pathogens, knowledge about the effect of concurrent drought and biotic stress in grapevine is scarce. This is especially true for Plasmopara viticola, the causal agent of grapevine downy mildew. This research addresses how vines with different drought tolerance respond to the challenge with P. viticola, drought stress or their combination, and how one stress affects the other. ResultsArtificial inoculation was performed on two cultivars, exposed to full or deficit irrigation, in the Mediterranean climate of Cyprus. In parallel, leaf disks from these plants were inoculated in controlled conditions. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under irrigation, the local Cypriot cultivar Xynisteri was more susceptible to P. viticola than the drought-sensitive Chardonnay. The successful infection by P. viticola at 1.5 days post inoculation was associated with high levels of indole-3-acetic acid (IAA), salicylic acid (SA), jasmonic acid (JA), and proline and strong decreases in antioxidant enzyme activity. Drought, on the other hand, triggered the accumulation of IAA and abscisic acid (ABA), which antagonized JA and SA. Exposure to drought stress increased the susceptibility to P. viticola of the leaves inoculated in controlled conditions. Conversely, both cultivars showed resistance against P. viticola when inoculated in planta under continued deficit irrigation. Despite their resistance, the pathogen-associated responses in IAA, antioxidant enzyme activity, and proline still occurred in these drought-stressed plants. Surprisingly, abscisic acid, rather than the generally implicated jasmonic and salicylic acid, seemed to play a prominent role in this resistance. ConclusionsDrought exposure increased the susceptibility of in vitro inoculated leaves. Conversely, deficit irrigation induced resistance to P. viticola in both Chardonnay and Xynisteri when inoculated in planta. ABA, rather than JA and SA, was implicated in this resistance. The irrigation-dependent susceptibility highlights that the changing climate and the practices used to mitigate its effects, may have a profound impact on plant pathogens.


2015 ◽  
Vol 67 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Ghader Habibi

The present research was designed to determine the effects of exogenous salicylic acid (SA), selenium (Se) and silicon (Si) on the resistance of canola (Brassica napus L. cv Okapi) seedlings to salt stress. Foliar application of SA (0.1 mM) in canola plants under drought stress for 25 days exhibited a significantly positive effect on shoot dry mass and raised the levels of total chlorophyll as well as boosting the activity of superoxide dismutase (SOD) and catalase (CAT). In addition, soil application of silicon (0.35 g Na2SiO3/kg soil) had ameliorative effects on canola root growth under drought. It is concluded that SA and Si enhanced the salt tolerance of canola by protecting the cell membrane against lipid peroxidation. However, the foliar application of Se (10 mg/l) had no ameliorative effects on canola growth and antioxidant capacity under drought stress, as could be judged by accumulation of malondialdehyde (MDA).


Sign in / Sign up

Export Citation Format

Share Document